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1. INTRODUCTION

How does one optimally allocate a scarce resource? Many would answer to those who can
best use it, or by need, but how to evaluate either of these? These fundamental questions have
concerned humans for centuries and are at the heart of the political and the ethical. One of the
crucial insights in economics is that the price system provides a simple and automatic mech-
anism to aggregate preferences and efficiently distribute a good based on who values it most
as measured by willingness-to-pay. Moreover, for any different allocation, there always exists
a mechanism combining the price system with a lump-sum transfer that can make everyone
at least as well off. Nonetheless, many important societal resources, including but not lim-
ited to housing, health care, sustenance, and transportation, are often provided to the public at
below-market rates and, occasionally, for free. Additionally, some items are distributed without
a price system entirely, e.g., COVID-19 vaccines, but instead through a “queuing” procedure
that prioritizes those deemed the most vulnerable and forces others to wait. Given the potential
allocative distortions and inefficiencies that such policies have, why are they so commonplace?

Many policy-makers defend these policies on the basis of equity. Specifically, they argue
that if vital societal resources were distributed solely based on market prices, individuals with
the least ability to pay would be left out from benefiting from them. This poses an important
ethical problem, particularly as those with the lowest willingness-to-pay are generally of lower
socio-economic status and might actually be those in most need. In other words, monetary
screening devices may not be efficient mechanisms in settings with sufficient inequality, as
willingness-to-pay may not accurately capture true need.

In this paper, we study how to model this tradeoff between equity and efficiency. We study
a setting with both market and non-market mechanisms at the disposal of the designer. Specif-
ically, we wish to characterize the benefits in welfare and targeting associated with the intro-
duction of queuing as a potential mechanism in addition to prices and rationing. While the
tradeoffs associated with these non-market mechanisms have been studied extensively within
the academic literature, this has always been done in isolation. Indeed, there is very little aca-
demic work focused on the multi-dimensional case with prices, queuing, and rationing.

To gain some intuition about the potential welfare benefits for introducing queuing as a
mechanism to a setting with prices and a rationing options, we propose a simple example with
two agents, 1 and 2, and only one good to allocate amongst them. We report their values for
the good, money, and time in Table I. In particular, suppose that Agent 1 values both the good
and money at 100 (we can think of the value for money as the utility cost of spending a dollar);
Agent 2 has values equal to 1 for both money and the good. Clearly, their willingness to pay is
identical (the ratio of their two values) and consequently the optimal mechanism would be to
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ration between the two agents. In other words, both Agent 1 and 2 would individually receive
0.5 of the good. Thus, the overall welfare from this allocation would be 50.5.

Now suppose the agents also have a value for time, which is equal to one for both. Then, in
the presence of queuing, we have the ability to offer the agents the following menu: burn 1+ ϵ
units of time to receive 1 good. Note that agent 2 would not select this menu as it would give her
negative utility (1−(1+ϵ)< 0). In contrast, agent 1 would be delighted to select this option, as
it yields a welfare equal to 100− (1+ ϵ) = 99− ϵ. Moreover, this is a tremendous improvement
over the case above without queuing, where we only able to achieve a total welfare of 50.5.
While this is a simple example, it should provide the necessary intuition to understand the
potential welfare benefits of queuing.

TABLE I

MOTIVATING EXAMPLE

Value for good Value for money Value for time

Agent 1 100 100 1
Agent 2 1 1 1

This paper contributes to an extensive literature discussing tradeoffs between market and
non-market mechanisms. In particular, previous work has studied the welfare implications of
rationing and price controls (Weitzman, 1977, Condorelli, 2013, Reuter and Groh, 2020, Dwor-
czak et al., 2021, Akbarpour et al., 2023a, Kang and Zheng, 2023) and of queuing and costly
signals (Nichols et al., 1971, Nichols and Zeckhauser, 1982, McAfee and McMillan, 1992,
Hartline and Roughgarden, 2008, Chakravarty and Kaplan, 2013, Rose, 2021, Zeckhauser,
2021, Dworczak, 2023). However, almost the entirety of this work has focused on these non-
market mechanisms in isolation, whereas our focus is to understand the welfare impacts of
employing both rationing and queuing.

We proceed as follows. Section 2 provides an overview of the related literature and Section 3
introduces a general model. We discuss our theoretical results in Section 4, specifically focusing
on optimal mechanisms for a setting with two agent types. Finally, we discuss computational
approaches and report these results in Section 5.

2. RELATED LITERATURE

2.1. Rationing and redistributive markets
How to appropriately allocate a commodity in the presence of scarcity is a fundamental

question in economics. Economists generally favor the price system as the means for allocation,
as it provides a simple and automatic mechanism to elicit preferences in order to match a scarce
commodity with those who value it most. Moreover, for any other allocation, there always exists
a combination of the price system and a lump-sum transfer that can make everyone at least as
well off. However, as Weitzman (1977) notes

That is true enough in principle, but not typically very useful for policy prescriptions, because the necessary
compensation is practically never paid.

Indeed, Weitzman argues that this willingness-to-pay elicitation does not always accurately
capture people’s true needs, especially in the presence of broad inequality. In such settings, he
shows that a free, random allocation can perform better than competitive pricing when consid-
ering overall welfare.

Condorelli (2013) characterized the optimality of market and non-market mechanisms for
allocating identical goods in a setting where agent’s willingness-to-pay does not perfectly cap-
ture the value they place on the item. Akbarpour et al. (2023a) extend this model by allowing
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the designer to have preferences over revenue to maximize a redistributive objective. Relat-
edly, Dworczak et al. (2021) study a more general market setting with buyers and sellers and
show that in markets with significant same-side inequality, price controls may be optimal even
though they induce rationing.

2.2. Queuing / Ordeals / Costly Signals

The potential utility of queuing as a tool to screen for targeted buyers has been discussed
in theory work since Nichols et al. (1971) and Nichols and Zeckhauser (1982). Hartline and
Roughgarden (2008) consider what they call “money burning” mechanisms, but analyze costly
signaling in isolation, without also allowing for monetary transfers or considering redistribu-
tive concerns. Chakravarty and Kaplan (2013) also investigate optimal allocation with costly
signals, but again do not concurrently allow for monetary transfers. Recent work, such as Dwor-
czak (2023), has made some progress in characterizing optimal costly-signaling allocation
mechanisms, but generally continues to limit the tools available to the mechanism designer
to reduce the dimensionality of the problem. Others, like Rose (2021) and Zeckhauser (2021)
have instead focused on equity and other ethical concerns in using queuing to allocate critical
goods and services such as healthcare. The intention of this work is not to suggest that abstract-
ing away from the more complex burdens of queuing, such as those discussed in Bertrand et al.
(2004), is appropriate for all contexts.

On the empirical side, a small body of work has established the usefulness of queuing and
ordeals for targeting in practical contexts. Alatas et al. (2016), for example, demonstrate that
requiring beneficiaries of a transfer program in Indonesia to apply for benefit rather than en-
rolling them automatically results in poorer beneficiaries enrolling on average. Similarly, Du-
pas et al. (2016) observe substantially higher use rates of chlorine solution among recipients in
Kenya when distributed via vouchers that must be redeemed monthly rather than through a free
distribution program. Finkelstein and Notowidigdo (2019), meanwhile, observe that the SNAP-
eligible elders most responsive to a set of interventions to reduce enrollment frictions are on
average higher-income and less sick than those that enroll in the absence of intervention. In
contrast to these works, Deshpande and Li (2019) observe a decrease in the targeting efficiency
of disability benefits following the closure of Social Security Administration field offices (thus
increasing the non-monetary costs of application via travel costs). However, this result is likely
largely explained by the intuition (which we partially formalize) that non-monetary ordeals
which are disproportionately burdensome on target recipients often cannot be used to improve
targeting.

2.3. Multidimensional mechanisms

Recent work has begun to make progress on costly screening in multidimensional settings.
Yang (2022) provides a necessary condition for the use of costly screening in a principal-
agent setting where the principal has access to both productive (including monetary) and costly
screening tools. Patel and Urgun (2022) characterize the optimal mechanism in a principal-
agent setting without monetary transfers, but where the principal can make use of both costly
screening and costly verification. We seek to differentiate from this work primarily by focusing
on mechanisms that are optimal from a welfare-maximizing perspective in a setting with many
agents, and by linking costly signaling to monetary inequality and other explicit redistributive
preferences. Most recently, Akbarpour et al. (2023b) make progress in this area by providing
conditions for the dominance of one costly signaling device over another, also in a setting
involving the welfare-maximizing allocation of a set of goods.
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3. MODEL

Framework. We study a setting where a designer allocates a mass of homogeneous goods
of size Q to a unit mass of agents distributed according to density function f(v) characterized
by a type vector (vx, vm, vt). We denote the overall type space by V . The three dimensions of
agents’ type vectors have a joint distribution in the population that is known to the designer.
The first component of an agent’s type is vx, which denotes their value for receiving a good.
Similarly, vm and vt represent the agent’s value for money and for time, respectively. The utility
an agent of type (vx, vm, vt) receives from an allocation of x at a price of p and a queuing cost
t is given additively as vxx− vmp− vtt.

As a brief remark, this framework can be adapted to a willingness-to-pay and welfare weight
formulation (as discussed in Dworczak et al. (2021) and Akbarpour et al. (2023a)). To do so,
we simply re-parameterize our type space as (r,λ, c) where r ≡ vx

/
vm denotes the agent’s

willingness-to-pay, c≡ vt
/
vm represents the agent’s willingness-to-queue, and λ≡ vm is the

social welfare weight. In this setting, the contribution of the agent’s utility to the social welfare
function is λ(rx− p− ct). We apply this framework in some later sections of this paper.

Mechanism. A mechanism m consists of an allocation function x : V → [0,1], a price func-
tion p : V → R+, and a non-pecuniary time cost function t : V → R+. Specifically, we restrict
agents to at most unit demand, and impose the restriction that prices and time-costs be non-
negative. The allocation function can be interpreted as yielding either fractional allocations of
a divisible good or lottery probabilities for an indivisible good.

Objective. In our setting, the mechanism designer wishes to maximize social welfare. Ad-
ditionally, the designer values revenue with weight α, and any time cost incurred is wasted.
Thus they maximize∫

(vxx(v)− vmp(v)− vtt(v))f(v)dv+ α

∫
p(v)f(v)dv (1)

subject to individual rationality, incentive compatibility, and feasibility constraints. Some pos-
sible values of α have natural interpretations. For example, we can capture a setting in which
the designer distributes all revenue raised using equal lump sum transfers for each agent with
α =

∫
vmf(v)dv. We might also take α as the maximum value of the vm, to reflect a setting

in which the designer can target all revenue to the "poorest" agent. An α greater than all vm
might indicate that the mechanism designer instead has some preferable outside use in mind
for revenue.

4. THEORETICAL RESULTS

We begin our analysis of the model by restricting to a setting with only two types of agents.
We assume that these agents are present in equal proportions (a unit mass of each) and that the
total quantity of the good is Q= 1. Let θ0 represent the first type and θ1 the second. We will
use the re-paramaterized type space discussed above, such that agents of type θi receive utility
λi(rix− p− cit) from burning t, spending p, and obtaining allocation x. To simplify further,
we normalize the parameters with respect to type θ0’s values:

u0(x0, p0, t0) = x0 − p0 − t0;

u1(x1, p1, t1) = λ(rx1 − p1 − ct1).



CS 360: REDISTRIBUTION 5

4.1. Optimal price mechanism without queuing

We begin by examining the form of the optimal mechanism without queuing (that is, the
optimal mechanism when we add an additional constraint that t0 = t1 = 0).

REMARK 1: Provided that 1+λ
2

≤ α ≤ λ and r ̸= 1, it is optimal when queuing is not per-
mitted to sell at p= 1 to the type with the higher willingness-to-pay.

Intuitively, this result says that on this range α is small enough such that designer prefers not
to extract maximum revenue from type 1 when r > 1 but is large enough that the revenue loss
from rationing outweighs the targeting gain when r < 1. In this setting, the r = 1 case must
lead to rationing for both types at the same price, since then they have an identical willingness
to pay and it is not possible to ration to one type but not the other (when Q = 1). Given the
constraint on α, this rationing occurs at p= 1/2.

PROOF: Our objective function is now given by x0 − p0 +λ(rx1 − p1)+α(po + p1). There
are two cases we need to analyze: that where r > 1 and where r < 1.

First, suppose that r > 1. That is, θ1 has a higher willingness-to-pay in monetary terms than
θ0. From the linearity of the objective function, there are three relevant options: we can sell the
good to θ1 at p= 1, sell the good to θ1 at p= r, or we can ration the good between both types
for some p ≤ 1/2. Plugging in the values, we see that the first option generates a welfare of
λ(r − 1) + α and the second of αr. Because α≤ λ, the former always exceeds the latter. For
the rationing case, we must solve the maximization

max
p∈[0,1/2]

λr+ 1

2
+ p(2α− λ− 1).

We have α≥ 1+λ
2

, and therefore 2α−λ−1≥ 0, so this quantity is maximized at p= 1/2. Thus
the maximum welfare that can be obtained from rationing is λ(r−1)

2
+α. This is always strictly

outperformed by selling at p = 1, which we demonstrated obtains welfare of λ(r − 1) + α.
Consistent with the desired result, selling at p= 1 to θ1 is optimal.

Now consider the case when r < 1, that is that θ0 has a higher willingness-to-pay than θ1.
Once again, from the linearity of the objective function, there are three relevant options: we can
sell the good to θ0 at p= r, sell the good to θ0 at p= 1, or we can ration the good between both
at p≤ r/2. Plugging in these values, we see that the first option generates welfare of 1−r+αr
and the second of α. Since r > 1 and α> 1, the second option is preferable to the first. For the
rationing case, we maximize the same objective function as in the first rationing case, this time
over p ∈ [0, r/2]. By the same logic using our bound on α, the maximum is found at p= r/2,
yielding welfare of 1−r

2
+αr. But this is strictly worse that selling the good at p= r, to obtain

welfare of 1− r+αr. Overall, then, selling at p= 1 to θ0 is optimal, again consistent with the
desired result.

Q.E.D.

4.2. Optimal mechanism with queuing

We now move to analyzing the form of the optimal mechanism when queuing is permitted.

PROPOSITION 1: Provided 1+λ
2

≤ α ≤ λ and r ̸= 1, the optimal mechanism uses queuing
at a price of 0 to allocate the good to the target type when c <min{1, r} − α

λ
. Otherwise the

good is sold to the type with higher willingness-to-pay at p= 1 (without queuing).
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PROOF: Here we return to examining the full objective function,

x0 − p0 − t0 + λ(rx1 − p1 − ct1) + α(p0 + p1).

We begin by considering optimal pure allocation mechanisms. Since Q= 1, this implies only
a single non-zero quantity allocation. Denote by t the queuing time associated with this alloca-
tion. We can conceptualize this as a transformation of θ1’s willingness-to-pay from r to r− ct
and of θ0’s willingness-to-pay from 1 to 1− t, allowing us to apply much of our logic from
the previous proof. We consider the optimal mechanism fixing a given t and then optimize over
values of t to find the overall optimal pure-allocation mechanism.

Parallel to the first of our cases from the previous proof, we first consider when r−ct > 1−t.
Appealing to our previous logic and result, when this condition holds the optimal price is
p= 1− t, yielding welfare of λ(r− ct− 1+ t)+α(1− t). Similarly, when r− ct < 1− t, the
optimal price is again p= 1− t, yielding welfare of α(1− t).

Given this, we move now to look at the optimal choice of t. Suppose that r > 1. If c≤ 1, we
always have r − ct > 1− t for t > 0. Then we optimize λ(r − ct− 1 + t) + α(1− t), so the
optimal pure-allocation mechanism uses queuing with t= 1 (and p= 0) if c < 1− α

λ
and sells

at p= 1 (with t= 0) otherwise. Alternatively, if c > 1, then minimizing t is optimal both when
r− ct > 1− t and when r− ct < 1− t. Therefore, the optimal pure-allocation mechanism sells
at p= 1 (with t= 0). We can combine these two cases to state that that when r > 1, the optimal
pure-allocation mechanism uses queuing at a price of 0 to allocate the good to the target type
when c < 1− α

λ
, consistent with the desired result. For other values of c when r > 1, the good

is sold to θ1 at p= 1, also consistent with the desired result.
Now instead suppose that r < 1. If c≥ 1, we always have that r − ct < 1− t, so t= 0 and

p= 1 is optimal. If c < 1, with t= 0 and p= 1 we obtain welfare of α, while with t= 1 and
p = 0 we obtain welfare of λ(r − c) + α. The optimal pure-allocation mechanism thus uses
queuing with t = 1 (and p = 0) if c < r − α

λ
and sells at p = 1 (with t = 0) otherwise, also

consistent with our desired result.
What remains is to consider allocations involving rationing. Applying our previous reason-

ing, we can rule out rationing allocations where rationing is accomplished through a single
queue and some combination of prices. To see that rationing with differing queue options for
each type is also non-optimal, we offer a simple argument. Consider all allocations where
one type queues for time t and the other queues for at least t. We can again view the result-
ing queuing costs as shifting the agents’ willingness-to-pay. But this returns us to the case of
single-queue allocations, with valuations shifted to r− ct and 1− t, where rationing is always
non-optimal. We thus rule out all rationing options and complete the proof. Q.E.D.

This result matches our intuition that queuing is only used for targeting if it is sufficiently
cheap for the target type relative to for the non-target type. For it to be optimal to use queuing
for targeting, we must at least have c < 1, so queuing is not optimal when equally or more
costly for the target type. We see also that the maximum c that justifies queuing is decreasing
in α

λ
. This reflects the fact that the more the mechanism designer cares about raising revenue

relative to benefiting the target type, the stronger the screening effect of the queue must be to
justify the revenue loss resulting from screening.

This result demonstrates also that queuing can be a useful tool even when the target type
already has a higher willingness-to-pay than the non-target type, since queuing can allow the
designer to still sell to target agents while screening non-target agents. That is, queuing can
reduce the price (here to 0) at which the designer can sell exclusively to target agents.
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4.3. Single-bundle mechanism

In this subsection, we consider a slightly different formulation of our original problem. We
assume that the designer is only able to impose a fixed time cost T and thus the non-pecuniary
time cost function t ∈ {0, T}. Furthermore, we modify our utility function slightly, such that
agents only incur this fixed time cost proportional to their allocation of the good. In this case,
utility is given as ∫

(x(v)(vx − t(v))− vmp(v))f(v)dv+ α

∫
p(v)f(v)dv

where we set vt ≡ 1. Then, for each agent, we may calculate a modified version of willingness-
to-pay r̂ ≡ (vx − T )

/
vm. Note that we have decomposed the problem into a unidimensional

one; that is, an agent’s preferences are fully captured by r̂ given a time cost T . This maps
directly to Dworczak et al. (2021)’s setting and thus we may apply their result (Proposition 2)
that no matter the state of buyer-side inequality, the competitive price is the optimal single-price
mechanism. Hence, the optimal price is determined by T , and so we denote this as p∗T . Finally,
to find the optimal T it suffices to solve

T ∗ = argmax
T

[∫
(x(v)(vx − T )− vmp∗T )f(v)dv+ α

∫
p∗T f(v)dv

]
.

Thus, the optimal single-bundle menu imposes a queuing cost T ∗ and lists the item for the
resulting competitive price p∗T .

5. COMPUTATIONAL APPROACHES

In this section, we consider computational approaches to our allocation problem. In partic-
ular, we will consider a discrete distribution of agents and formulate the model as a linear
program. We will then present results for various distributions of agents.

5.1. Linear program

As discussed above, we restrict our framework to a discrete distribution of agents with N
types. As before, each agent has unit demand and is characterized by (vx, vm, vt). Thus, the
utility of receiving a bundle of (x,p, t) is given as vxx − vmp − vtt. We adapt the objective
function to the discrete case, but it is otherwise identical. Formally, we solve the following
linear program

max
(xi,pi,ti)

∑
i

vx,ixi − vp,ipi − vt,iti + α
∑
i

pi

s.t. xi ≥ 0, pi ≥ 0, ti ≥ 0, ∀i (Non-negativity)

xi ≤ 1 ∀i,
∑
i

xi ≤Q (Feasibility)

vx,ixi − vm,ipi − vt,iti ≥ 0, ∀i (Individual Rationality)

vx,ixi − vm,ipi − vt,iti ≥ vx,ixj − vm,ipj − vt,itj , ∀i ̸= j (Incentive Compatibility)

As discussed in Section 3, the first and second summation terms in the objective represent
the total welfare and revenue, respectively. The feasibility constraints enforce unit demand for
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each agent and the overall scarcity of the good. The individual rationality constraint ensures
that agents receive nonnegative utility from the allocation, i.e., that they wouldn’t be better off
not participating. Finally, the incentive compatibility enforces that each agent weakly prefer
their bundle to any other offered bundle. Thus, we need one constriant for every pair of agents,
which implies that the linear program has O(n2) constraints.

Using this approach, we now present three different simulations, each one computed using
100 agents, 50 goods, and α = 1

N

∑
i v

m
i , the average value for money. We solve the linear

program using an open-source Python library, PuLP.

5.2. Two types: “rich” and “poor”

For the first simulation, we consider two types of agents: “rich” agents, which we will denote
as θR, and “poor” agents, denoted with θP . This simulation is meant to capture the original in-
tuition behind the motivating example from the introduction; specifically, both θR and θP have
similar willingnesses-to-pay but θP has much greater values for the good and for money. Con-
cretely, for θR we draw vx

i , v
m
i ∼ U([1,40]) and for θP from U([60,100]). These distributions

were chosen to have sufficient differentiation in values within type while still ensuring separa-
tion from the other type; however, the exact values were chosen arbitrarily.

Figure 1 illustrates the results of solving the linear program to obtain an optimal mechanism
without queuing (1a) and with queuing (1b). Each point in the graph depicts an agent in its
type space (value of money by value of good). There are two distinct clusters: in the bottom
left, θR type agents, and in the top right, θP type agents. The coloring of each agent in the
plot denotes the bundle they receive in the optimal mechanism obtained by the linear program.
The legend presents the menus as an ordered tuple (x,p, t), such that a bundle (1,2,0.5) would
be interpreted as spending 2 and burning 0.5 to obtain 1 good. Red (the topmost entry in the
legend) always denotes the zero menu.

FIGURE 1.—Optimal mechanism with θR and θP types
(a) without queuing (b) with queuing

We make the following observations about these results.
1. Number of menu items. Without queuing, there are two non-zero menu items: one ra-

tioning option and a full option. With queuing, however, we obtain fourteen distinct bun-
dles. It is possible that over arbitrary distributions the optimal mechanism may even con-
sist of an infinite menu of lottery options, as has been proven for other multidimensional
mechanism design contexts (Daskalakis et al., 2015).
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2. Welfare improvement among θP . Without queuing, the θP agents with higher values
for money did not receive any allocation because their willingness-to-pay was too low,
despite having high valuations of the good. However, with queuing, every agent of type
θP receives at least some amount of the good – at a minimum, 0.4 of the good. Moreover,
the majority of the θP agents that were being rationed to in the without queuing case,
now receive the good with certainty. These results are achieved by adding a sizable time
burning component to the bundle, which screens out the agents of type θR.

3. Reduction in revenue. We observe that the case without queuing raises substantially
more revenue (0.502 per agent) than the with queuing case (0.355 per agent). This is
because we are substituting some of the screening done by prices with time in the queuing
case. For example, looking at the θP agents with the highest valuation of the good, without
queuing they spent 0.941 to receive 0.952 of the good, whereas in the queuing case they
have been reduced to spending 0.454 to obtain 1 good as they also burn 19.3 units of
time. Nonetheless, even if we were able to perfectly redistribute the revenue raised (i.e.,
with ex-post lump sum transfers), the total welfare among θP would still be higher in the
queuing case.

5.3. Four types: all quadrants

Next, we extend the type space to include the other two quadrants of the type space as well.
Specifically, we now consider four types:

• θBL: low vx, low vm (“bottom left”);
• θBR: high vx, low vm (“bottom right”);
• θTL: low vx, high vm (“top left”);
• θTR: high vx, high vm (“top right”).

We define “low” and “high” as in Section 5.2 with the two types: that is low values are drawn
from U([1,40]) and high values from U([60,100]). Note that θBL = θR and θTR = θP from
above. These combinations were chosen in order to obtain coverage the majority of the type
space while still maintaining some distinction between the agents. This initialization also seems
like a more realistic setting: in the world, we are likely to have agents that are rich and poor,
and that value and don’t value the good.

FIGURE 2.—Optimal mechanism with four types (θBL, θBR, θTL, θTR)
(a) without queuing (b) with queuing

Figure 2 illustrates the results of solving the linear program for this type initialization without
queuing (2a) and with queuing (2b). Similar to the results in Section 5.2, introducing queuing
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leads to an increase in menu items (though fewer than before), allows for better targeting of
“rich” (θBL) agents, and delivers most “poor” agents (θTR) more of the allocation. However,
in this case none of the θTR agents get the full good – instead, these are sold to agents with the
greatest willingness-to-pay (θBR and some in θBL). Interestingly, the overall extent of queuing
in this setting is substantially reduced relative to before, likely because more agents are receiv-
ing the good from the direct price mechanism. Both with and without queuing, θTL agents,
i.e., those with a low value for the good and with a high value for money, do not receive any
allocation, which is intuitive as the marginal gain to our objective is always greater for the other
types and given the scarcity of the good.

5.4. Uniform and independent

Finally, we draw agents’ types from the same distribution, using vx
i , v

m
i ∼ u([1,100]). This

is similar to the case above, though there is no longer any enforced separation between agents.
That is, the agent’s values now cover the whole range.

FIGURE 3.—Optimal mechanism with uniform distribution
(a) without queuing (b) with queuing

The results of this simulation are displayed in Figure 3. Interestingly, the results for the
majority of agents are approximately identical with and without queuing. In particular, there
is a large green region that receives a bundle of (0.544, 0.303, 0) in the no queuing case and
approximately the same region in the queuing case that receives a bundle of (0.541, 0.302, 0).
This region accounts for the majority of agents in both plots. Moreover, a large amount of the
revenue generated from the allocation in the queuing case is obtained from two agents, each
who pay a price of 12.378 to receive one good. In addition, as observed previously, adding
queuing reduces the fraction of agents receiving a zero menu.

6. CONCLUSION

A long tradition of economic thought has identified the usefulness of costly screening mech-
anisms, both in theory and in practice. Generally, however, analytical explorations of their use
have kept their distance from multidimensional settings, with the exception of some recent
work.

In this work, we first characterize the optimal use of queuing devices in a simple multidi-
mensional context with monetary transfers where agents have varying values for money, or
equivalently where the mechanism designer has redistributive preferences in the form of wel-
fare weights. Our results align with simple intuitions about queuing devices. In particular, we
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establish that queuing devices which are relatively more costly (in monetary terms) for wealth-
ier agents can improve targeting efficiency, and improve the ability of the designer to subsidize
poorer agents. The “value-shifting” interpretation of costly signaling used in our analysis may
potentially prove useful for further work, and we provide an additional example (the optimal
single price/queue mechanism) further demonstrating its utility.

To build on this theory and provide additional intuition, we produce a computational ap-
proach for solving discrete distribution instances of our general model. We parameterize the
mechanism designer’s optimization problem as a linear program, and use a freely-available LP
solver to generate numerical results. Here we again provide results that match intuition, in par-
ticular with respect to the mechanism designer’s need to balance revenue generation, targeting,
and deadweight loss from queuing. These results appear to validate the concern that allowing
for queuing may greatly increase the complexity of the optimal mechanism, but future work
may be able to address this issue by focusing on continuous distributions with full support or
restricting the set of allowable distributions in other ways.

The overall problem of multidimensional mechanism design, whether involving costly sig-
naling or other tools, remains challenging. Given the ubiquity of costly screens (such as queues
and forms) in allocating critical goods, however, we believe it is crucial to better understand
when and how they can be optimally used.

Even in our simple model, there remain avenues for further development, including by re-
moving restrictions on α and Q to allow for optimal mechanisms that involve rationing. Simple
extensions to a small number of agents greater than two could also prove useful, as the com-
plexity of the problem grows quickly with the complexity of the type space. One productive
avenue for future work might lie in exploring approximately optimal mechanisms, in partic-
ular by limiting the permitted complexity of the menu used. In our computational work we
frequently observe in the optimal mechanism that many agents are close to indifferent between
several menu options, suggesting that approximations limiting the number of menu options
might be able to approximate the optimal menu very closely (alternatively, this might suggest
that an analysis of continuous distributions with full support would yield a simpler result). We
are excited to see this area of research continue to develop, and perhaps continue to contribute
to it ourselves.
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