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1 Introduction

The phenomenon of self-organizing collective behavior — that is, behavior that arises absent any global
coordination, rather through the aggregation of locally optimal decision-making — has implications
for many different applications in a variety of fields, from magnetization in classical physics to robot
swarms in robotics to models of pricing in economics [1]]. Opinion dynamics is often formulated
as one of these processes, and the Hegselmann-Krause (HK) is a common model for this task [2].
This paper will explore the one-dimensional case and analyze both the convergence and clustering
dynamics of the model. We take a simulation approach to both topics and prove a result providing an
upper bound for the density of clusters. Finally, we discuss a modification to the model, altering the
underlying connectivity of the agents.

2 Hegselmann-Krause Model

We proceed by formalizing the definition of the Hegselmann-Krause (HK) [2] system in dimension d.
Let there be n agents. For every time step ¢ € Z=°, the position of an agent i is given according to
z;(t) € RL Then z(t) = [x1(t), x2(t), ..., 2, (t)] is taken to be the state of the system at time ¢.

We define the neighborhood of an agent ¢ at time ¢ as

Ni(t) ={j € [n] - d(wi(t), z;(t)) < R} (M
for a vision range R and a distance measure d. As is common practice in the literature, we let R = 1
and d(a, b) = ||a — b]|, that is the Euclidean norm for the rest of the paper. Hence, the neighborhood
of agent 7 at time ¢ is the collection of agents within a distance of 1. Every j € N;(¢) is referred to

as a neighbor and this relationship is symmetric, ¢ € N (t) if and only if j € N;(t). Note that i is
always a neighbor to itself. We refer to an agent ¢ with |V;(¢)| = 1 as isolated at time .

At t = 0, the position of every agent is fixed. Note for convenience we will often denote this initial
state as xg. The positioning of the agents is then subsequently synchronously updated at each step in
discrete time, according to the following rule

1
N(®)] JIEN(t)<1

In words, the position of an agent ¢ at time ¢ 4+ 1 updated to be the average position of all other agents
in their neighborhood.

For the rest of this paper, we consider the one-dimensional Hegselmann-Krause system — that is,
d = 1. Then each agent has a scalar position at each time step and the distance between agents is
simply the absolute difference along the real number line.
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Below we outline two important properties of the one dimensional system.

Proposition 1 ([3]]). The system preserves the order of positions. That is, for any 4,j € [n], if
x;(0) < x;(0), then z;(t) < z,;(¢) forall t > 0.

Proposition 2 ([3]). If at time ¢, and for some i € [n], |z;41(t) — z;(¢)| > 1, then for all ¢’ > ¢t also,
|zi41(t") — 2;(t)| > 1. So the system can be decomposed into subsystems, one consisting of agents
{1,...,i} and the other of agents {i + 1,...,n}, each evolving independently after time ¢.

An important implication of Proposition [2]is that, if at any time ¢, an agent’s neighborhood only
includes itself, it will never move again. We call such a point frozen at time ¢. Convergence occurs
when all points are frozen.

3 Convergence

One common quantity of interest in the HK literature is the number of steps required for the system
to converge; that is, the time ¢ such that for all ¢ € [n] we have z;(¢t + 1) = x;(¢). Given an initial
state xg, we define 2o (29) = lim;_, o x(t) and refer to z () as the steady state corresponding to
initial state x( [4]. Formally, we may then define the termination time as follows.

Definition 3.1 (Termination Time [4]). Given an initial state x, the termination time T'(x) is the
number of time steps required for the system to converge to the steady state corresponding to xg.
That is,

T(xo) = inf{t € N: z(t) = zoo(0)} 3

Most work in the literature has been concerned with obtaining an upper bound on the termination
time. This was first established to be O(n5) in [3]], though [3]] improved this result to a tighter bound
of O(n?). The lower bound has received less attention, in part because it is difficult to construct
examples that take a long time to converge. Consequently, the lower bound was believed to be Q(n)
[5]. However, subsequently [6] shows that a specific configuration freezes only after time 2(n?).

Convergence is currently understood to lie between n? and n3. That is, independent of the initial
state, O(n?) < T(xq) < O(n?) for any z.

Theorem 3.2 ([3]). The HK system converges within O(n®) time steps.

We provide a short proof of this result.

Proof. From Proposition we have that there exists an ordering over the agents such that x;(¢) <
x;41(t) forall t and i € {1,...,n — 1}. Consider time step ¢ and suppose that the system has not
yet converged. Then there must exist at least one agent ¢ whose neighborhood consists of an agent j
where z;(t) # x;(t). Consider the leftmost such agent, denoted as £(¢). Note that by this minimality
condition, this agent must have a neighbor strictly to its right and none to its left.

Before we proceed, we introduce the following lemma (whose proof we omit for brevity, see [3]).

Lemma 3.3. For everyt > 0, by time t + 2, agent £(t) increases in weight, or gets frozen, or moves
to the right by at least #

Without loss of generality, 2,,(0) — x1(0) < n because otherwise Proposition 2] would allow us to
decompose the system into independent subsystems. Thus, x,, (t) —x1(t) < n for all t. Now consider
applying the lemma above until there is no more such agent £. Observe that since there are n points,
£(t) can only increase in weight at most n times. Additionally, since ¢ has no left neighbors, it must
be non-decreasing over ¢. In particular, we must have 2(;42)(t +2) > x4 (t 4 2), and thus the
third case in the lemma may only occur a maximum of 2n? times. Putting this together, we have
that the lemma can only be applied 2(n + 2n?) times, and thus the system must have converged for
t > 2(n+2n3). Thus, T < O(n?). O

In this section, we study the convergence of the HK system according to different initializations xg
using a simulation approach. In particular, we analzye two configurations: equal spacing and the
“dumbbell".



3.1 Equal Spacing.

First, we consider equal spacing, where each agent is equally spaced along the real number with
spacing d € [0, 1]. We begin by considering the scenario where d = 1, and thus each agent is spaced
by their vision range. We will denote this configuration as &,,. For simplicity, we will begin the
sequence at 1; thus, the ¢-th element of &£, is equal to <.

This choice of configuration feels quite natural and intuitively one we might expect to have slow
convergence. Indeed, it straightforward to see that if such a spacing were infinitely long in both
directions, i.e. Exoo = (..., —1,0,1,...), this would not terminate ever, as each agent is balanced
between an agent on their left and on their right. However, because the sequence is not infinite, the
endpoints have no agent more extreme than them, and thus are pulled toward the model. This leads to
a domino effect and the model terminates.

This intuition leads us astray, as it can be shown that such a configuration converges in approximately
5n/6 iterations. This is visualized in Figure[l}
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Figure 1: Convergence time of equal spaced agents as a function of number of agents

The graph demonstrates an interesting periodicity in the termination time. This stems from the
fact that after every fifth step, a cluster of exactly three agents will disconnect and collapse in the
subsequent step [[7]. We illustrate this dynamic (on one end, as it is symmetric) in[2] We will analyze
cluster formation more rigorously in a later section.
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Figure 2: Example of cluster formation in equal spacing configuration with n = 90

It has also been shown that there is a closed formula for the obtaining the termination time [[7]:
m(n—1)
3

T(E) =145 "2 +§(\/§Sin(m)—cos( )+ 1). )

6 3

One modification to this equal spacing configuration that preserves the spatial structure is to introduce
weights at given points. Observe that we can equivalently formulate this as introducing additional



agents that occupy that position. For example, if we wanted to double the weight at an initial position
in the equal spacing configuration, we could simply introduce another agent at that position. We
observe that naively adding weights to points actually appears to accelerate the convergence. For
example, consider the following procedure. Initialize n agents according &,. Then randomly choose
a subset of size k agents to allocate n/k weight additional weight to. We analyze convergence as a
function of both n and k. For fixed n, it is clear that increasing k substantially decreases the number
of time steps until termination (see Figure [3). Moreover, even for low values of k, the number of
iterations required is lower than in the unweighted case. The case scenario appears to be placing
additional weight on the endpoints of &,,.
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Figure 3: Average convergence time of equal spaced agents with weights placed randomly on £ points

This makes intuitive sense, as in the unweighted version none of the “interior” points move by very
much because they are always counterbalanced; only the endpoints are slowly being dragged to the
middle ultimately cascading through the system. However, this parity is immediately broken when
weights are imposed as points are drawn drastically in the direction of the biggest weight in their
neighborhood.

So, how might we most adversarially add weights? The configuration discussed in the next section
will provide an answer to this.

3.2 The Dumbbell Configuration.

Let n be a positive, even integer. The “dumbbell” configuration D,, consists of 3n + 1 agents, whose
positions are given as

-1 if1<i<n,
(i) =qi—(n+1) ifn+1<i<2n+1, ®)
n+ 1 if2n+2<i<3n+1.
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Figure 4: Depiction of the dumbbell configuration D,, [3]

Thus, this configuration has a cluster of n agents at —1/n, then n + 1 agents spaced one apart from 0
to n, and finally another cluster of n agents at n + 1/n. This yields a dumbbell shape, as it can be
thought of the equal spacing formulation from above (the “bar") with two masses on either side (the
“weights"). See Figure [f] for a visual representation.

To illustrate the convergence dynamics of this system, we plot the evolution of agent positions in an
example Dy (13 agents in total) in Figure[5} The top and bottom lines are thicker as they represent



a greater point mass (these are the “weights" of the dumbbell). Convergence is symmetric around
the midpoint of the interval, in this case that is /2. Descriptively, the weights are pulled toward the
middle because there is no stabilizing force on the other side as these are the endpoints. Eventually
the weights are pulled sufficiently close that they start drawing the second closest agent as well. Once
this happens, the domino effect starts and the agents begin to freeze.

Time Step

Figure 5: Example of convergence in dumbbell configuration for D4 (13 agents)

So, what is the time until convergence in this configuration? This question was answered by [6] and
is presented in Proposition 3]
Proposition 3 ([6]). The “dumbbell" configuration D,, has termination time 7'(D,,) = Q(n?).

To visualize this, we conduct a simulation study, calculating the number of time steps until conver-
gence for every dumbbell D,, forn € [2,...,100]. We then plot these results (blue) in Figure|§|by
the number of agents. Note, recall that D,, corresponds to m := 3n + 1 agents. In addition, we plot
the curve corresponding to 0.03m? (orange). Remarkably, this appears to be an incredibly accurate
approximation of T'(D,,).
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Figure 6: Convergence of dumbbell configuration

One open problem, as discussed in [6]], is to compute the constant factor more accurately. The authors
hypothesize that the termination time 7'(D,,) = (1 4 o(1)) %2. We take an applied approach to this
question to get an even more precise relationship. In particular, we run a linear regression according
to the following specification

T(Dy) ~ o+ Bim + fam? (6)
onn € [2,...,50], where 35 captures the coefficient on the quadratic term. We obtain the relationship
T(D,,) = 0.0284m? + 0.575m + 0.6677 and evaluate its predictive power in Figure [7l We note
that the constant coefficient was substantially less significant than that of the higher-order terms.
Specifically, we obtain T(Dn) within in-sample (red points) and out-of-sample (blue points) on
n € [51,...,200] (though for visual clarity only the first 50 points are plotted). Remarkably, this

prediction is near perfect. Figure E visualizes the relative error % of the predictions for



the out-of-sample points. For larger n, it appears that the error converges to approximately 0.001 of
the true termination time. Moreover, these values are positive, suggesting that we are overestimating
the termination time.
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Figure 7: Evaluation of linear regression fit out-of-sample

-
0.0020 ..
L] ° R
5 0o01s e
E [] e e L .
] . ..o....‘ hd .00.0....."“\ '~.
£ 00010 * e e g%em  * 0.‘{(' Ly 0
3 *f e ol e?
S . * eVl
< oo00s .®
4 o, %
u 00000 ee®*
3 ¢ o
& _0.0005
L ]
~0.0010
L]
200 300 400 500 600

Mumber of Agents

Figure 8: Relative error of linear regressing out-of-sample

3.3 Width of the Interval.

In this section, we briefly explore the role that the width of the interval has in determining convergence.
As previously discussed, it is significantly difficult to construct a configuration that requires greater
than O(n) time steps. To our knowledge, the previous dumbbell configuration is the only known
initialization to require €2(n?). Further complicating these dynamics, is that the width of the interval L
appears to affect the time steps until termination non-linearly [8]. For example, clearly for L < 1, any
configuration must converge in 1 step. Similarly, it can be shown that if < 2, it must terminate in at
most 2 steps. However, as can be seen below, as L increases, this relationship becomes increasingly
difficult to parse.

To study this, we conduct the following experiment. Fix a value of L and n. Sample n points
uniformly at random from the distribution [0, L]. Run the HK system until it terminates and note
the time step ¢t. We repeat this procedure 100 times for each pair (L, n) and take the average time
required for termination. We plot the results in Figure [0}

As can be seen above, for most values of L the termination time appears to be sublinear in n.
Meanwhile, when L = 5, the performance is dramatically worse and seemingly linear in n. Thus,
we find that the convergence dynamics of the system also depend on the interval width. In the next
section, we will explore how the interval width also determines the number of clusters.
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Figure 9: Average convergence time for uniform sampling along [0, L] with n agents

4 Clusters

In previous sections, we have mostly been concerned about how long it takes HK systems to converge.
In this section we focus on what the state of convergence looks like, specifically the number of
clusters in the final convergent state.

Definition 4.1 (Clusters). The clusters in the convergent state of an HK system is simply the values
in x, with duplicates removed. The size of this set is the number of clusters at convergence.

4.1 Clusters in our example configurations

Previously, we observed that with an equal spacing initialization, it seems that groups of three
form into clusters in a 6-step process. We examine the process that makes this phenomenon occur
consistently, by looking at the first 6 time steps for positions 1, 2, 3 in an equal space configuration
(with sufficiently high n, for example in Figure 2] Call the agents agent a, b, c respectively

In the O-th time step, a is at position 1, b at 2, and c at 3.
a moves to between 1.5 and 1.75, b and ¢ don’t move.

a moves to 1.75 and 2, b to between 2 and 2.2, and ¢ doesn’t move.

a moves to between 1.9 and 2, b to between 2.3 and 2.5, and c to between 3 and 3.2

D= o

a moves to between 2 and 2.5, b to between 2.4 and 2.6, and ¢ to between 3 and a + 1. Then
next agent (at position 4) moves up to something below 4.1.

5. a moves to between 2.5 and 3, b to between a and 3, and ¢ to between b and 3. Then next
agent (at position 4) moves up again, now more than ¢ + 1. This starts this process at step 1
for the next 3 nodes as well, with an offset of 3 higher than positions and agents given here.

6. a,b, c converge to the same position between 2 and 3.

Because of the recursive nature of this process, this will repeat for every group of 3 agents. This
is mirrored from the top as well, until this process meets in the middle. Thus, we see that the HK
system converges with almost exactly L/3 clusters (here, L = n — 1).

Interestingly, we get an almost identical result for the dumbbell configuration as well. This is because
the majority of the space is taken by uniformly-separated agents, just as the example we just covered.
Intuitively, the extra agents at the end "slow down" convergence, but the clusters at the end look
similar. We include in Figure[I0]the graph of the number of clusters in each of the equal spacing and
dumbbell configurations as a function of the initial interval L.

4.2 2R-Conjecture

Wedin [8] introduces what he calls the 2 R-conjecture (also see [9]). This involves counting clusters
upon convergence of randomly-initialized graphs. Here, R is the vision range as we’ve described
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Figure 10: Clusters after convergence with dumbbell (left) and equal space (right) initializations, compared with
L/3

previously, and so we interpret it as 1. This conjecture states that the average distance between
clusters upon uniform distributions tends to be more than 2. In his exploration, Wedin finds that the
average distance between clusters with 5000 agents on the interval [0,100] is 2.4. Wedin laments that
"this behavior is far from understood" and that perhaps "conjecture” is too strong. Nevertheless, it
seems that the uniform random initialization yields on average more clusters than the uniform and
dumbbell initializations.

This begs the question: what is the upper bound on the number of clusters that can be created over an
initialization range L?

4.3 Our Contribution: Dense Inputs and Dense Clusters

We first establish a very basic lower bound: we cannot have any clusters with distance 1 or less in the
convergent state. We don’t prove this rigorously, but it should be clearly intuitive: if we consider the
"lowest" cluster that is within distance 1 or less of another cluster, that cluster will move toward the
higher cluster. The result follows from the number of agents being finite. So what is the best we can
do? Of course, we could initialize agents to be distance 1 + ¢ apart to start (for any € > 0) and no
other agents - this is immediately converged with distances arbitrarily close to 1. Thus, we focus on
requiring there to be a high number of agents; specifically, agents must cover the interval arbitrarily
densely. We prove the following result:

Theorem 4.2. Let § > 0 and € > 0. For any L > 0, we can define an initialization that has points
that fills the range [0, L] such that there is no continuous unfilled space of length more than 6 and
upon convergence, there are at least %ﬁ clusters remaining.

Our proof is constructive, so with this theorem we give a way to fill an interval [0, L] arbitrarily
densely to converge with L clusters by setting e = 1/L.

Our proof will look as follows: we construct enough agents to fulfill the requirement that there is
no empty space greater than §. Then, we create large groups of points at intervals of 1 + €. Ata
high level, the first set of points is small enough that the space between the large groups doesn’t
change much, and they converge as clusters almost exactly as they started. However, if we set each of
the large groups to have the same magnitude, most of the points between them settle in the middle,
causing some of the groups to slowly converge. This phenomenon is illustrated in Figure[TT] Thus,
we need to be a little careful about how we initialize our large groups.

Proof. Letd, € and L as given and construct the initialization as follows:

1. Initialize an agent at point nd for all integers 0 < n < L/d

2. Initialize [52% ] agents at points 2n(1 — &) for 0 < 2n < L/(1 + ¢) where n is an integer

622
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Figure 11: Convergence when initializing large groups of the same size for 1 < L < 9. Notice that some of the
large groups merge together after slowly moving toward an intermediate, smaller cluster.

3. Initialize [ -] agents at points (2n + 1)(1 — ) for 0 < 2n+ 1 < L/(1 + €) where n is an
integer

Steps 2 and 3 we will refer to as "large groups”. Now, we look at the steps that lead to convergence:

1. In the first time step, any agent a initialized in step 1 will move to be very close to some
large group, namely some group initialized in steps 2 or 3. There are two cases (assuming
€ < 1): either only one large group is within vision range of a, or two large groups are. In
the former case, it will move within a range of less than /2 of this group, since there are
only at most 2/4 other points in its vision, and there are at least [6;46] agents in the large
group. In the latter case, there will be one group of agents initialized in step 2 and one from
step 3. Thus, there are | 6820512] agents in the largest group, plus an additional (6;46] agents in
the other large group and 2/6 agents from step 1 in the vision of a. A proportion of at least
% of these are in the group from step 2, so a will move within a range of £/2 from this

group.

Now, the large groups are surrounded by points that are no more than /2 away from the
groups’ original points. Since order must be preserved of the agents, the large groups cannot
move much.

2. In the second time step, each large group will have points within &/2 of its original location,
and nowhere else. Thus, each "pseudo-cluster” (it is not a cluster yet because we haven’t
reached convergence) has points no more than € apart, and is more than 1 unit from any
other pseudo-cluster. Thus, the pseudo-clusters merge, and we have convergence, because
each now-cluster is distance more than 1 from any other cluster.

We see an illustration of this process in Figure[I2] Indeed, large groups have two sizes, and barely
move until convergence. From the fact that the large groups are surrounded by points no more than
/2 from their original location, they will not merge with other large groups as discussed in step 2.
Thus, we have 1%5 clusters, one for each large group created in steps 2 and 3. This completes our
proof. O

This new result is interesting on its own; it does have the potential to be extended to include stronger
assumptions - for example, it currently uses O(#) agents, which seems like it may be excessive.
Additionally, this converges in 2 steps; it remains open if we can achieve L clusters after converging
in more steps, for example O(n).
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5 Graph Connectivity

5.1 Connectivity.

This section will discuss the notion of connectivity within the system and explore its impacts on
convergence. Recall that in the standard HK model, agents update their positions based on the
positions of those in their neighborhood. Returning to the model’s original opinion dynamics framing,
we can think about this as capturing the influence of an agent: that is, an agent is influenced by those
in their neighborhood and not by those outside of it. However, there is always a potential or capacity
for influence between any pair of agents.

However, what if we relax this assumption? That is, we incorporate the possibility that a given agent ¢
will never be influenced by a certain agent i’ even if i’ € N;(t) at a time step ¢. This relaxation makes
a lot of sense intuitively as well as in application — there are certain people we choose to ignore or
who we just do not have knowledge about and thus cannot be influenced by. Additionally, we will see
that this has interesting effects on the convergence of the system.

To capture this, we introduce a physical connectivity graph G, as in [4]. We define G, as an
undirected graph on n vertices, such that each vertex corresponds to an agent. We extend an edge
from a vertex ¢ to a vertex j if and only if agent ¢ has the potential to be influenced by agent ;. In
other words, (i, j) € E(Gp, exists only when ¢ has access to j. As Gy, is an undirected graph, this
notion is symmetric.

We always assume that G, is connected and contains all self-loops — that is, an agent 7 always
has access to their own position. Moreover, Gy, is assumed to be fixed for a given model and in
particular is not dependent on the time, unless otherwise specified. Note, that applying this analysis
to the original model, we would obtain G}, = K,, the complete graph on n vertices as every agent
has access to every other agent’s position.

With this representation of the connectivity of the system, we revisit the termination time definition
from above.

Definition 5.1 (Maximum Termination Time [4]). Given a physical connectivity graph Gy, the
maximum termination time T*(Gpy,) is the supremum over the set of termination times corresponding
to all possible initial states. That is,

T*(Gpn) = sup{T(Gpn, xo) : xo € R"}, @)

where we have extended Definition [3.1]to depend on both the initial state and the connectivity graph.

10



Furthermore, [4] shows that with this relaxation of connectivity, on average most HK systems no
longer terminate.

Proposition 4 ([4]). If Gy, is not a clique, the maximum termination time is infinite: 7*(Gpy,) = oc.

5.2 Redefining Convergence.

In the previous section, we have shown that limiting the connectivity of the system removes the
guarantee of convergence to the steady state. However, this does not mean that the analysis of
the convergence dynamics of such systems is fruitless. To proceed, we introduce the definition of
€-convergence.

Definition 5.2 (e-convergence [4]). For € > 0, given a physical connectivity graph G5, and an initial
state o € R", a HK system reaches e-convergence at time 7" € N if its state is within € of the steady
state corresponding to ¢, that is if

[2() = Zoo (o) | <'¢, (8)

forallt > T.

Observe that this is a weaker notion of convergence than previously used. Indeed, in this case, the
state of the system must simply lie within an € neighborhood of the actual steady state. With this, we
introduce the notion of e—convergence time.

Definition 5.3 (¢-Convergence Time [4]). For ¢ > 0, given a physical connectivity graph G/, and an
initial state o € R™, the e-convergence time C¢(Gpy,, xo) is the number of time steps required for
the system to achieve e-convergence, that is

Co(Gph,zo) =Inf{T € N: ||x(t) — Too(z0)|| <€, Yt >T}. 9)

Then, just as with termination time, we can define the maximum e—convergence time.

Definition 5.4 (Maximum e-Convergence Time [4]). For ¢ > 0, given a physical connectivity graph
Goph, the maximum e-convergence time C(Gpp,) is the supremum over the set of e-convergence times
corresponding to all possible initial states. That is,

C? (Gpn) = sup{Cc(Gpn, o) : zo € R"}. (10)

We now proceed with obtaining a lower bound on the e-convergence time as a function of the
connectivity Gpp. To do so, we introduce the notion of conductance [10].

Definition 5.5 (Conductance). Given an undirected graph G = (V, E)) on n vertices, we define the
conductance ¢(G) as
19(5)]

HO) = iy 5, aB) "

where O(S) = {(i,j) € E:i € S,j € S} and d(S) refers to the the sum of the degrees in the set.

Intuitively, this measures how “well-knit" G is. With this notion, we are able to obtain a lower bound
on the maximum convergence time.

Proposition 5 ([11]]). Given an physical connectivity graph G, and € > 0, if G, is not isomorphic
to K, the maximum convergence time C, (Gph) satisfies

log(ev'2)|
log(1 = 2¢(Gpn))

Ce(Gpn) > (12)

In words, this provides a lower bound on the convergence as a function of the conductance of the
connectivity graph.

In this section, we study the convergence of the modified HK system according to different connec-
tivity graphs using the equal spacing initialization.
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5.3 Connectivity Simulations.

We first consider the dumbbell graph. This is defined similarly to the dumbbell initialization, in the
sense that there are two large masses connected by a thin bar. In the case of the graph, we define it as

being composed of two n/2 cliques that are connected by a single edge. We note that ¢(D) = n%,

and so applying Propositionyields a maximum convergence time of C* (D) = Q(n?) [4]. Notably,
this is identical to the termination time for the dumbbell initialization in a fully connected graph,
though these are separate concepts.

As a motivating example, consider a simple system with n = 20 agents, each spaced 0.05 apart. As a
result, for any agent ¢, |x; — x;| < 1 for all agents j, and thus N;(0) = {j : Vj}. Since every agent
is a neighbor of every other agent, it follows that this system will terminate in a single iteration, as at
t = 1 an agent ¢’s position is given by

1 n
wi(1) =~ > ap=a;(1), Vi (13)
k=1

However, now consider this system but modify the connectivity to be given with a dumbbell graph.
For simplicity, let the first ten agents [0, 0.05, . . ., 0.45] form the first clique and the remaining ten the
second clique. Finally, extend an edge between the minimum agent in both subsets (i.e. the agent at O
and at 0.5). Observe that after just one iteration, every member of a clique aside from the minimum
member converges to the same value. However, because the minimum members are also connected
to one another, they will be pulled closer toward the midpoint of the interval than the others. Note,
that after the first iteration this problem essentially becomes a system with only four agents, two of
which both have “weight" equal to (n — 2)/2. For simplicity, refer to the weighted agent below and
above the midpoint as agents 1 and 4, respectively, and the non-weighted as agents 2 and 3. Because
of the dumbbell connectivity, agents 1 and 4 are only influenced by 2 and 3, respectively, and thus are
being very slowly dragged toward the midpoint. Note, there are no points to the left of agent 1 or to
the right of agent 4, and hence thus after each time step they must move strictly toward the middle. In
our simulation study, this simple system requires approximately 1,100 time steps to converge. The
first 100 are plotted in Figure[T3]

Alternatively, we can consider the star graph S,, (with self-loops), which is a bipartite graph of the
form K ,. Thus, there is one vertex in the graph that is connected to all of the other vertices. Every
other vertex is only connected to this center vertex and itself. This scenario is considerably faster
than with dumbbell connectivity yet still much slower than full connectivity, as it converges in 32
time steps. [12] show that such a graph has a finite convergence time C*(.S,,) < oo.

In fact, these example leads to a more general result, shown in [4].

Proposition 6 ([4]). If the initial configuration x(0) satisfies V;(0) = {7 : Vj} for all 7, then for any
€ > 0, the system achieves e-convergence in O(n? log(n)).

Additionally, observe that it is not always the case that the dumbbell requires more time steps until
convergence. If we consider the same exact system and connectivity graph, but with an initialization
of agents spaced 1 apart, it is clear that the system would converge faster than the fully connected
graph. This is because the two agents connecting the two cliques are never within range of another,
and hence the two middle agents begin to diverge, as can be seen in[14]

In general, one counter-intuitive result that we encountered when designing these connectivity
experiments is that increasing the connectivity of a graph does not ensure faster convergence. Indeed,
[12]] show that introducing edges into the graph has the possibility of moving C(Gpy,) from a finite
value to co. Further complicating our understanding of the connectivity, is that convergence is
defined over the set of all possible configurations, of which there are, of course, infinite. Hence, poor
performance on one such configuration might lead to infinite convergence, even while performance
in the average case is strong. This is a similarly predicament to the standard HK problem, where
most configurations terminate in O(n), yet careful constructions of the initial configuration like the
dumbbell lead to the lower bound of Q(n?).
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Figure 13: Example of convergence in equal spacing configuration with dumbbell (top) and star (bottom)
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Figure 14: Example of convergence in equally spaced system (d = 1), by connectivity n = 20
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6 Conclusion

In this paper, we have analyzed the convergence and clustering properties of the one-dimensional
Hegselmann-Krause system. We run simulation experiments to analyze these dynamics and provide
a proof of small clustering result.

Several directly relevant open questions still remain to be addressed in the future. First, to our knowl-
edge no other initial configuration other than the dumbbell has been proven to have a lower bound of
2(n?). Further work should investigate whether the dumbbell is a singular such configuration or if
there are others. Second, future work should analyze the dynamics of clustering in configurations in
order to rigorously address the 2 R-conjecture. Finally, for physical connectivity in the graph, future
research should work to understand other classes of graphs that have bounded e-convergence times.
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