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Abstract

Accurately predicting which areas require additional attention and assistance in
the medical world is an important and critical task for augmenting global health
outcomes. Doing so with limited data is of particular interest, as the least supported
areas are least likely to have infrastructure in place to facilitate the acquisition
of additional healthcare resources. In this paper, we use satellite images from
NASA’s Landsat database to predict malnourishment (operationalized by mean
BMI) and child mortality rates. We assess the performance of a variety of computer
vision models, task-agnostic MOSAIKS feature vectors, and metadata-enhanced
fusion models on ordinal discretizations of our outcome variables. Our best model,
a fine-tuned Vision Transformer pre-trained on ImageNet, achieves a balanced
accuracy of 66.7%, doubling random chance, on a CDC-derived ordinal encoding
of Body Mass Index (BMI), and an accuracy of 50.3%, a 51% improvement over
the random baseline, on an ordinal encoding of child mortality rates. We provide
suggestive evidence that the model attends to sociologically relevant aspects of the
images, such as road networks and city/village layouts. Future work should entail
further enhancements of the most promising Vision Transformer model, further
qualitative analysis and visualization of the model’s predictions, and extensions to
other measures capturing a region’s health outcomes.



1 Introduction

The main contribution of this paper is to utilize satellite images and satellite-derived variables to
predict basic indicators of maternal and child health (MCH) in western Africa at the village-level.
Such indicators are primarily obtained from nationally representative household surveys such as the
Demographic Health Survey (DHS). These surveys have many limitations; they are expensive in terms
of pecuniary cost and human capital and consequently can suffer from limited temporal resolution
and representativeness, as only a small minority of individuals can be selected for interviews.

The accessibility and coverage of satellite imagery present a promising opportunity to take advantage
of recent advances in computer vision and machine learning to build a model to provide real-time
estimates of MCH at a village level. Intuitively, satellite images contain information about a variety
of causes of MCH outcomes. These causes include wealth and poverty of a village; accessibility of
fresh water and nutrients; interconnectedness of a village within the broader region; microclimate
and agriculture; and infrastructure quality. Existing research demonstrates that satellite imagery can
be used to reliably predict a number of these features.

We focus on predicting two basic MCH indicators at the village-level: mean Body Mass Index (BMI)
and under-five mortality (UFM) rate. Both of these variables are continuous and thus most naturally
suited to a regression problem. However, to make the problem more tractable, we discretize the
outcomes to form a classification task.

2 Related Work

Although still a nascent field, deep learning models have been increasingly used to predict economic
data from satellite images. Engstrom et al. used object detection to extract features (e.g. number
of buildings, type of agriculture, and roof material) from satellite images of Sri Lanka, which they
subsequently fed into a simple linear regression model to predict poverty in neighboring areas [1].
Jean et al. used transfer learning to produce a CNN which predicts consumption expenditure and asset
wealth from satellite images of African countries. The authors used a CNN pretrained on ImageNet
to extract low-level image features, which they fine-tuned to predict nighttime light intensities
corresponding to input daytime satellite images. The learned nighttime light intensity served as a
proxy for GDP and was used to train the final model [2]. Yeh et al. also used nightlights to estimate
wealth in Nigeria, but they used nightlight images as inputs to the model instead of employing transfer
learning to predict them indirectly [3]. Finally, Huang et al. used satellite imagery to evaluate the
impact of anti-poverty programs using the Mask R-CNN model for instance segmentation of buildings.
For each building instance, the size of the building footprint and the roof material were extracted
and used as proxies for housing quality, which was ultimately used as a proxy for household wealth.
The authors concluded that deep learning can complement and in some cases substitute in-person
survey data [4]. The successes of these models in predicting economic data from satellite imagery is
promising for our task, for economic conditions are certainly determinants of a population’s health.

Infrastructure quality and agricultural production may also be useful health indicators. Ohsri et al.
used an 18-layer ResNet to predict infrastructure quality of electricity, sewerage, piped water, and
roads in developing African regions from satellite images [5]. As for agricultural production, You
et al. study sought to predict soybean crop yields in the United States. They trained both a CNN
and a LSTM and added a Gaussian Process layer atop these networks to account for spatio-temporal
dependencies between data points [6].

There also exist precedents for using satellite imagery to directly predict health data. Bibault et al.
trained a model to predict cancer prevalence using satellite imagery and cancer prevalence estimates
from the CDC’s 500 (U.S.) Cities Project. They extracted image features from ResNet and then fed
them into an elastic net [7]. Levy et al. sought to predict county-level mortality rates in the US from
satellite images by fine-tuning ResNet. They used Shapley Additive Feature Explanations (SHAP) to
identify relevant features in satellite images across their test counties and found that lower mortality
rate is associated with environmental features such as sidewalks and hiking trails [8]. Additionally,
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Rolf et al. obtain a task-agnostic high-dimensional feature representation of satellite images with their
Multi-task Observation using Satellite Imagery and Kitchen Sinks (MOSAIKS) model. The authors
show that these features generalize across 9 diverse prediction tasks such as forest cover, house price,
and road length. Furthermore, while achieving similar accuracy to deep learning networks, it expends
a fraction of the computational cost [9].

The study most similar to our task was conducted by Adyasha Maharana and Elaine Nsoesie at The
University of Washington. They predicted the prevalence of adult obesity from satellite images using
the VGG-CNN-F network (to extract gradients, edges, and patterns to aid in object detection) fed into
an ElasticNet regression model. They found that physical characteristics of a neighborhood, such
as the presence of parks, highways, green streets, and crosswalks, are associated with variations in
obesity prevalence [10]. Notably, their satellite images were limited to 7 large U.S. cities, whereas
we train our model on more developing areas.

3 Data

Our data set consists of NASA’s Landsat satellite images combined with Demographic and Health
Survey (DHS) data as well as purely tabular DHS data. The satellite data entail 157 folders, each
representing a country and the year the images were taken. Each folder has an average of 750
511x511 images (though more recent years have more images). Specifically, the data are stored in
.tfrecords, which contain a byte-string for the data-payload, the data-length, and CRC-32C hashes
for integrity checking. Each data payload contains one 511x511 satellite image which represents
6.75 square kilometers. Each image has channels for red, green, blue, NIR, SWIR, country code,
image number, DHS-ID, longitude and latitude of the cluster, and the year the image was taken. The
DHS-ID contains the year the survey was taken as well as the DHS cluster code, which represents the
groupings of households that participated in the survey. NIR and SWIR encode infrared information,
but we do not use these channels as inputs to our model. We initially normalize the raw RGB values of
each image according to a minimum value of zero and a maximum of 255 (without this normalization
the images appear very dark).

Our labels come from DHS surveys, which can be connected to our satellite images using the DHS-ID.
Specifically, for each DHS-ID, we have the DHS year, DHS cluster, latitude and longitude of the
cluster, mean BMI, unmet need rate, under five mortality (UFM) rate, skilled birth attendant rate,
stunted rate, fully vaccinated children rate, and an indicator for urban or rural.

For the purposes of this study, we restrict our focus to predicting the mean BMI and UFM rate
for each image. Moreover, for computational reasons, we restrict our main sample to a set of 14
western African countries, taking the most recent satellite imagery for each country.1 All but one of
the country images were taken since 2010. Figure 1 depicts two images associated with relatively
higher mean BMIs (greater than 25) and two with relatively lower mean BMIs (less than 20), all from
Nigeria and taken in 2018. Figure 2 plots the geographic distribution of our sample, where each point
indicates an image and is colored by our outcome variable. The high-level spatial distribution of
these values conform to our a priori understanding: areas along the coast are more affluent and thus
have higher BMIs and lower mortality rates whereas areas near to and in the Sahara are substantially
poorer and thus have lower BMIs and higher mortality rates. Also note that child mortality rate varies
greatly across both urban and rural environments (see Appendix Figure A1).

1In particular, we select the following country-year pairs: Burkina Faso (2010), Benin (2012), Central African
Republic (1994), Ivory Coast (2012), Cameroon (2011), Gabon (2012), Ghana (2014), Guinea (2018), Mali
(2012), Nigeria (2018), Sierra Leone (2019), Senegal (2010), Chad (2014), and Togo (2013).
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(a) High BMI Images (> 25) (b) Low BMI Images (< 20)

Figure 1: Examples of satellite image data, Nigeria 2018

(a) Colored by body mass index (b) Colored by under five mortality rate

Figure 2: Geographic distribution of images, colored by outcome

4 Approach

4.1 Outcome Construction

Mean BMI and UMF rate are continuous variables and are thus most naturally suited for a regression
task. However, we simplified the problem into a classification task, which proved to be sufficiently
challenging and is medically motivated, as it is most relevant to public health to detect and understand
values at the extremes of the distribution.

Figure 3 depicts the continuous distribution of Mean BMI scores (left) and UFM rates (right) in our
sample. The Mean BMI distribution resembles a Gaussian centered around 23 with a slightly longer
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Figure 3: Histogram of BMI scores, UFM rates for western Africa satellite images

right tail. One natural discretization of this distribution might be to bin the sequence into quintiles.
Thus, first we group the images into the following quintiles, which produces the following cuts: 20.8
and below, 20.8 to 22.1, 22.1 to 23.3, 23.3 to 24.8, and 24.8 and above. An alternative approach
would be to discretize the data according to commonly define medical ranges. For example, the CDC
classifies any BMI under 18.5 as underweight, BMIs between 18.5 and 24.9 as healthy, between
25 and 29.9 as overweight, and 30 or above as obese. As only 15 images fall into the obese and
underweight categories each, we coarsen the mapping into the following groups: 19.9 and below,
between 20 and 24.9, and 25 and above.

We follow a similar procedure for UFM rates. First, we discretize according to quintiles, which
leads to the bins: 4.8 and below, 4.8 to 8.1, 8.1 to 11.4, 11.4 to 16, and 16 and above. In addition,
we specify a more intuitive ‘severity" binning, corresponding to 10 and below (“low"), 10 to 20
(“medium"), and 20 and above (“high").

4.2 Models

4.2.1 Baselines

As our baselines, we compare our preferred models with naive, simple alternatives. First, we specify
a logistic regression on image data. Second, we use a basic two layer convolutional network where
each layer corresponds to a block of batch normalization (BN), 3× 3 convolution, ReLU, and 2× 2
max pooling. This is then inputted to a dropout layer and a final fully connected layer.

We also specify a baseline using the MOSAIKS model to generate embeddings for our images and
then fed them into a classification algorithm. In particular, the MOSAIKS model begins with a set of
images {Iℓ}Nℓ=1, each of which is centered at locations indexed by ℓ = {1, . . . , N}. The MOSAIKS
model then generates task-agnostic feature vectors x(Iℓ) for each satellite image Iℓ by convolving an
M ×M × S “patch", Pk, across the entire image, where M is the width and height of the patch in
units of pixels and S is number of spectral bands. In each convolution step, the inner product of the
patch and a M ×M × S sub-image region is taken, and a ReLU activation function with bias bk = 1
is applied. Each patch is a randomly sampled sub-image from the training images {Iℓ}Nℓ=1 [9].

4.2.2 Vision Transformer (ViT)

Our main model is a Vision Transformer (ViT), first introduced by [11] as an adaption of the seminal
Transformer architecture by [12] from natural language processing. We provide a visual overview of
this model in Figure 4 using an illustration from [11].

The standard Transformer is designed for text data and thus accepts a one-dimensional input of word
token embeddings. To adapt a Transformer to image data, the ViT is modified to take in a transformed
two-dimensional input. In particular, for a three-dimensional image x ∈ RH×W×C where H and
W represent the height and width respectively and C the number of channels, ViT flattens it into
a sequence of image patches xp ∈ R(HW/P 2)×(P 2C) such that P represents the desired resolution
of each image patch. Consequently, N = HW/P 2. These patches are then flattened using a linear
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Figure 4: Vision Transformer (ViT) Architecture [11]

projection into N ×D space to obtain a feature extraction z0:

z0 = [xclass; x
1
pE; . . . ; xN

p E] +Epos (1)

for E ∈ R(P 2C)×D and Epos ∈ R(N+1)×D, a matrix of positional encodings. We denote z0
0 = xclass.

This value is then taken as input to the model encoder, consisting of alternating layers of multi-headed
self-attention (MSA) and multi-layer perceptron (MLP) blocks, which contain two layers and a
Gaussian Error Linear Unit (GELU) activation function each. The MSA layer is defined as in [12]
using scaled dot product attention, that is for queries q, keys k, and values v:

[q,k,v] = zUqkv Uqkv ∈ RD×3Dk

A = softmax(
qkT

√
Dk

) A ∈ RN×N

SA(z) = Av

(2)

where Dk = D/k. Intuitively, A captures the pair-wise similarity between elements. Then MSA
with k attention heads is just a concatenation of these k outputs linearly projected back into D by
a matrix UkDk×D

msa . Before each block, a layernorm (LN) is applied and residual connections are
introduced after each block [13, 14]. Thus, for each layer l ∈ 1, . . . L, the model calculates

z′
l = MSA(LN(zl−1)) + zl−1; zl = MLP(LN(z′

l)) + z′
l. (3)

Finally, to calculate the image representation, a LN is applied to the last class token: y = LN(z0L).

One major benefit of this transformer architecture is that it has significantly less image-specific
inductive bias than CNN models. This is because a convolutional layer is local and dependent on
the neighborhood structure within the two-dimensional H ×W space (though we have seen that
with deep CNNs the overall receptive can be approximately global). In contrast, since MSA is fully
connected, these self-attention layers are fully global.

4.2.3 ResNet

In addition to ViT, we use a variety of convolutional methods. The first is ResNet, which presents a
residual learning framework to allow deeper neural networks [15]. The main challenge for deep neural
networks in computer vision prior to the introduction of ResNet was not overfitting but instead that
they were difficult to successfully optimize. To address this, ResNet introduces residual “shortcut"
connections, as illustrated in Figure A2.

Formally, these connections allow the model to bypass the non-linear transformations by providing
an identity function, that is, on the l-th layer, we have xl = Fl(xl−1) + xl−1. If we consider Hl

to be the underlying mapping from xl to xl−1, then we are effectively trying to learn the residual,
i.e. Fl(xx−1) = Hl(xl−1)− xx−1. This is hypothesized to address the issue as solvers often have
issues with many consecutive nonlinear layers; see [15] for an in depth discussion of the architecture.
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4.2.4 DenseNet

We also use a DenseNet, a model whose signature contribution is that each layer in the network
is not only connected to the one before it but to all previous layers [16]. As a result, all of the
feature maps from the previous layer are used as in inputs for a given layer. Specifically, the l-th
layer in the network is defined as xl = Hl([x0, . . . ,xl−1]), where Hl represents a composition of
operations. This dense connectivity has led to the model being referred to as a DenseNet. In their
implementation, the authors define Hl as the sequence: batch normalization (BN), ReLU, and a
3× 3 convolution. Placed in between these dense blocks are transition layers which correspond to
the composition of BN, a 1 × 1 convolution, and a 2 × 2 average pooling layer. Generally, these
transition layers are also used to downsample the image with a compression factor. This architecture
addresses the vanishing-gradient problem common in deep neural networks and also “strengthens
feature propagation" [16].

4.3 Evaluation Method

For classification, we convert our target into an ordinal variable by binning it into C classes. This
allows us to use multi-class cross entropy loss with mean reduction defined as follows:

l(x, y) =

N∑
n=1

1∑N
n=1 wyn

ln,

ln = −wyn log
exp(xn,yn)∑C
c=1 exp(xn,c)

.

(4)

Here, x is the input, y is the target, w is the weight, N represents the batch size and C the number of
classes. We define class weights wc according to the inverse distribution of classes in our training
sample. This ensures meaningful predictions, particularly given the unbalanced nature of our labels.

Although our focus was on the classification task, we did some initial exploration of the regression
problem by modifying the output layers of our vision models and feeding the MOSAIKS embeddings
into a linear regression. We utilize a mean-squared error loss (squared L2 norm) defined as follows:

l(x, y) =
1

N

N∑
n=1

(xn − yn)
2. (5)

Here, x is the input, y the target, and N the batch size.

5 Experiments

5.1 Experimental Details

We run our experiments using the Google Cloud setup provided by the CS 271 course, which means
an n1-standard-8 instance (8 vCPUs and 30GB RAM running one NVIDIA T4 GPU). We developed
our own Github repository and made use of pytorch and Huggingface model implementations. We
trained all models with a batch size of 64 and fine-tuned for 20 epochs, saving the model with the best
balanced validation accuracy. The ResNet and DenseNet models were pretrained on ImageNet-1k
and the ViT was pretrained on ImageNet-21k. We used AdamW to set the learning rate with a initial
values of lr=1e-4 and eps=1e-8. The learning rate was reduced after hyperparameter tuning to
enable more stable updates. We were concerned about overfitting in our image models, and thus
chose AdamW for our optimizer as it uses weight decay.

We split the images into train and validation sets according to a 85/15 percent split. We specify a
cross entropy loss using class weights according to the inverse class frequencies in order to ensure a
balanced objective. In addition, for each image we specify a series of transforms. For DenseNet and
Resnet, we each image to a PIL image, resize to a 224x224x3 image, and normalize the RGB values
to have mean [0.485, 0.456, 0.406] and standard deviation [0.229, 0.224, 0.225] (these are the values
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observed in ImageNet). We introduce some stochasticity during training by using a randomized
crop and adding a randomized horizontal flip. For logistic regression and our basic convolutional
network, we apply the pretrained ViT feature extractor for both train and validation, which we found
to perform better than the transforms above, though we omit these results for brevity. Finally, for ViT,
we also use its pretrained feature extractor. An example of an image alongisde its feature extracted
image is presented in A4.

We also design a joint fusion model, enhancing our vision models with image-specific metadata,
which is concatenated with the output of the vision model and fed into a multi-layer perceptron. In
our implementation, we include either a 64-dimensional embedding layer of an image’s country
(“Country Embedding") or the 4000-dimensional MOSAIKS generalized features (“MOSAIKS").

5.2 Quantitative Results

We report the balanced validation accuracy for our experiments in Table 1. Our top-performing
model across all specifications is some version of the pretrained Vision Transformer. For both
quintile binnings, the plain ViT performs best without metadata augmentation; in contrast, in the two
remaining binnings, the ViT with country embeddings performs best. Notably, the ViT enhanced
with MOSAIKS always underperforms the best ViT model, though its average performance across all
specifications is consistent with the other ViT formulations. For the BMI task, ViT performs twice
as well as random chance and significantly outperforms all of our baseline models. Similarly, ViT
performs 50 percent better than random chance for the under 5 mortality rate task. Importantly, the
accuracy levels underscore the intrinsic difficulty of the task and suggest space for further research to
refine and improve on these results.

Table 1: Balanced validation accuracy (%) by model and outcome binning
Body Mass Index Under 5 mortality rate

Model Metadata-enhanced Quintile CDC Quintile Severity

Baselines:
Random 20 33.3 20 33.3
MOSAIKS 25.7 46.8 24.9 38.8
Logistic Regression 30.1 54.7 24.9 42.6
Two-Layer CNN 36.7 50.1 24.3 39.0
Two-Layer CNN Country embedding 33.4 56.7 27.4 42.3

Vision Models:
ResNet 39.2 58.8 30.4 45.1
DenseNet 40.8 59.2 29.7 47.0
Vision Transformer 40.8 61.5 32.9 49.6
Vision Transformer Country embedding 39.5 66.7 30.6 50.3
Vision Transformer MOSAIKS 39.8 64.1 32.3 49.8

One important acknowledgement is that ViT was pretrained on the most extensive and robust image
dataset (ImageNet-21k) relative to the other pretrained models and our baselines were not pretrained.
Due to computational limitations, we are not able to pretrain these models on ImageNet-21k (which
consists of greater than 14 million images and over 21,000 classes). Moreover, a model architecture
such as ViT is simply too large to train exclusively on our main sample. Nonetheless, ViT is also
the most state-of-the-art and complex model that we use, and it is likely mucch better situated to
successful pretraining on ImageNet-21k than our baselines or the other vision models. Thus, we do
not believe that this is a significant limitation to the interpretation of our findings.
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In Figure 5, we report confusion matrices for the top-performing model for each of our prediction
tasks. This enables us to calculate the specificity and sensitivity for each class, where

specificityc =
TNc

TNc + FPc
= TPRc, sensitivityc =

TPc

TPc + FNc
= TNRc, (6)

which we report in Table 2. Notably, the BMI models appear most successful at the extremes: for both
specifications, the specificity is highest at the bottom- and top-most class. Indeed, the models appear
to have the most difficulty disentangling the images from the middle of the distribution (as seen by
specificities around 0.2 for the interior classes in the quintile approach). This is an important result, as
from a public health perspective we are most interested in identifying regions that are malnourished
rather than obtaining the most accurate functional distribution of weight over the images. A similar
dynamic exists for the UMF rate quintile, with extremely low interior specificities and substantially
higher values at the extremes. This is particular noteworthy as detecting regions with high UFM rates
is incredibly important. Unfortunately, this result is not replicated in the UMF rate severity model,
with the specificity actually tapering off for the higher class.

Table 2: Class-specific specificity and sensitivity for top-performing model (ascending order)
Figure Outcome Model Specificity Sensitivity

5a BMI quintile ViT [0.69, 0.23, 0.25, 0.19, 0.69] [0.83, 0.88, 0.85, 0.92, 0.79]
5b UMF rate quintile ViT [0.51, 0.18, 0.21, 0.1, 0.65] [0.77, 0.88, 0.86, 0.91, 0.74]
5c BMI CDC ViT w/ country [0.79, 0.46, 0.76] [0.84, 0.81, 0.7]
5d UMF rate severity ViT w/ country [0.6, 0.47, 0.43] [0.71, 0.67, 0.86]

(a) Mean BMI Quintile binning (ViT) (b) Under-5 Mortality Rate, Quintile binning (ViT)

(c) Mean BMI CDC binning (ViT with country em-
beddings)

(d) UMF rate severity binning (ViT with country em-
beddings)

Figure 5: Confusion matrices for top-performing models

5.3 Qualitative Results

In order to elucidate what aspects of the images were important to the classification decisions, we
saved the attention matrices within the ViT for each image. Intuitively, these capture what specific
areas of the image the attention heads learned were optimal to focus on during the prediction task.
As there are multiple attention heads and layers, we average attention across the heads and then
recursively multiply the (normalized) attention weight matrices together and cast the resulting matrix
into the original image space.
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Figure 6 provides an example of this calculation with the original image on the left, the attention
mask on the right, and attention map in the middle (calculated as the element-wise multiplication of
the two). Interestingly, the main activation in the attention matrix is in the bottom right corner, where
there are two villages. In addition, there appears to be a vertical line in the attention mask on the
left side of the screen, tracing the road network. In contrast, the least relevant portions of the image
according to the attention matrices appear to correspond to empty landscape. This is encouraging, as
it is in accord with our initial hypotheses about the potential signal contained in road networks and
village structure. We provide additional examples of visualized attention in the appendix (see A5).
These examples further illustrate the model attending to river and road networks, the presence of a
lake and settlement surrounding it, and outline of the coastline.

Figure 6: Example of visualized self-attention from ViT BMI model

5.4 Regression Specification

We conducted an initial exploration of the regression problem using the MOSAIKS embeddings fed
into a linear regression as well as each of our vision models. We encountered significant difficulty
with this approach; our models struggled to learn and yielded predictions with very little separation. In
particular, the predictions were almost always extremely tightly clustered around the mean. Notably,
L2 loss is a much more unstable and more difficult quantity to optimize than cross entropy loss, which
was used for the classification. This makes intuitive sense: the precise values of the predictions do
not matter in the classification, so long as the correct class receives the highest score. In contrast,
the magnitude of the score is the very quantity we are trying to accurately predict in L2 loss. This
makes the L2 loss formulated in the regression problem significantly less robust. Consequently, it
seems likely that we have insufficient data and computational power to properly learn the continuous
mapping from images to our targets.

6 Conclusion

We use satellite imagery to predict mean BMI and child mortatily rate in regions across western Africa.
We define and make use of multiple models, including Vision Transformers, ResNet and DenseNet,
as well as the MOSAIKS featurization model. We make mean BMI predictions for both a quintile
split as well as the CDC-designated BMI split; we make the infant mortality predictions for a quintile
split and a more intuitive, ternary split based on severity. Our best model on the CDC-designated BMI
split achieves an accuracy of 66.7%, doubling the accuracy of a random baseline; our best model on
the severity binning for the infant mortality rates achieves an accuracy of 50.3%, a 51% improvement
over the random baseline.

There are many future avenues of research. First, future work should look into further model
interpretability and visualization techniques in order to better understand what image features are
most valuable for these predictions. Moreover, the metadata augmentation could be further expanded
to include longitude and latitude coordinates as well as historical economic and political indicators.
Work on predicting other health indicators such as maternal mortality rate could also be pursued.
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Finally, with access to more data and computational power, it would be interesting to evaluate the
model performance using a broader set of countries from a roughly equivalent time period. All of
this work would advance the goal of eventually being able to predict regions that require additional
healthcare resources and assistance without much reliance on costly and limited survey methods.
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A Appendix

A.1 Acknowledgements

Special thanks to our mentors, Professor Pascal Geldsetzer and Ali Lenjani.

A.2 Figures and Tables

Figure A1: Variance of child mortality rates across differing environments

Figure A2: An example of a residual connection [15]

Figure A3: DenseNet architecture [16]
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(a) An example input image before feature extraction (b) Same image after feature extraction

Figure A4: ViT feature extraction of an input image. This feature extration applies a variety of
transforms to systematically process an image for the model. This includes normalizing the mean and
standard deviation to match the pretrained data (ImageNet-21k). In order to plot the image, values
less than 0 and greater than 1 are clipped.

Figure A5: Additional examples of visualized attention matrices. The first row shows the attention
paid to a river and road network, the second to the presence of water and a settlement nearby, and the
third appears to take note of the coastline.
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Figure A6: Distribution of infant mortality rates across Algeria

Figure A7: Vaccination vs. under 5 mortality rate
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