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Abstract

COVID-19 reshaped American housing markets by caus-
ing workers with the ability to work-from-home to leave
city centers for the suburbs. Economists typically study the
drivers of such changes using tabular economic data, like
population density. But this misses out on much of urban
life that has not been tabulated, such as the presence of
skyscrapers or upscale amenities. We propose this context
can be visually learned. Using a dataset of over 60,000 im-
ages of American cities from Google Street View, we predict
post-Covid housing market performance using a variety of
neural methods and show three main results. First, a pre-
trained vision transformer fine-tuned on our data, is able
to predict an ordinal post-Covid housing performance with
32% accuracy, which is substantially better than other vi-
sion models (for context, randomly picking labels achieves
5% accuracy). Second, saliency maps suggest that our mod-
els captures key urban features like skylines, the distance to
large buildings, and sidewalk corners. Third, an ensemble
model that combines the scores from our vision transformer
with tabular economic data outperforms either approach in-
dividually, achieving an accuracy of 51%. Our results sug-
gest urban imagery contain unique information relevant to
how the pandemic affected housing markets.

1. Introduction

The pandemic caused large-scale outflow of people and
economic activity away from city centers in America’s
largest metro areas. The scale of this outflow was not
random. Cities with pricey housing and high densities of
skilled tech workers saw larger outflows because such work-
ers had the ability to work remotely. This in turn led to
a relative reduction in property values for homes close to
dense city centers and a corresponding increase in property
further away [18]. Additionally, warmer climates and areas
with more space performed exceptionally well [&].

We hypothesize that such characteristics can be visually
learned. For instance, skyscrapers indicate office workers
and upscale amenities, such as Whole Foods or Equinox

gyms, are more frequent in areas with lots of high-skilled
workers. To this end, in this paper we develop models to
predict the extent of the COVID shock of a city from im-
ages of a city’s streets. Our exact specification uses Google
Street View image data as an input to various models includ-
ing logistic regression and a two-layer convolutional net —
our two baselines — as well neural models like the Vision
Transformer (ViT), DenseNet, ResNet, and Virtual Geom-
etry Group (VGG). With these models, we output a class
prediction representing a binned range of percent changes
in Zillow’s home value index.

Our deeper, image-based models perform substantially
better than our baseline models. However, all models ap-
pear able to distinguish between different neighborhoods
to classify changes in home prices. As an additional ex-
periment, we construct an ensemble model to quantify the
additional predictive power of image data over traditional
tabular economic data. Our results suggest that computer
vision methods are able to select features that predict urban
housing market dynamics but are hard to measure in con-
ventional economic data.

2. Related Work
2.1. Impact of COVID on Agglomeration

A long-standing literature shows how so-called “ag-
glomeration economies® contribute to city formation. Cities
benefit from deeper labour pools which reduces search costs
for firms. Ideas flow more easily leading to more firm for-
mation. Firms also face lower coordination costs with their
suppliers and buyers. Such dynamics are especially the case
for high-skill workers in industries like technology and fi-
nance. Indeed Diamond (2016) [4] finds a growing pattern
of high-skilled workers concentrating in a few cities over
the late 1900s. That in turn led to both higher housing
prices, the development of dense commercial districts fea-
turing skyscrapers and the growth of consumption amenities
like restaurants and leisure activities like Equinox gyms.

Work-from-home (WFH) may change these dynamics
by reducing the cost of coordinating over distance. That
has led to large and persistent outflows from city centers in



America’s priciest cities [ 18], especially in those with many
WFH-compatible jobs like tech. Other literature shows that
worker productivity is surprisingly high under work-from-
home [3, 9], which provides further evidence that outflows
from city centers should persist. These papers inform our
hypothesis that the characteristics of cities that had large
outflows are visually learnable.

To predict home price changes, economists will typi-
cally run multivariate regressions of the form y; = f(X;)
where y; represents the change in home prices and X; a
matrix of characteristics for a zip code i. In our setting X
includes population density, the share of WFH-compatible
jobs, distance from the central business district and number
of business establishments. However, there are many rele-
vant zip code characteristics that are not available in tabular
format. To our knowledge there are few widely accessible
measures of, say, the number of skyscrapers across cities, or
the degree of gentrification as measured by upscale exercise
gyms.

Our hypothesis is that rich image data may contain addi-
tional information on top of existing tabular characteristics.
If true, we should achieve better performance with an en-
semble model combining image and tabular data than either
model individually.

2.2. Computer Vision and Economics

There is a growing literature applying advances in and
techniques from computer vision to economic fields. For
example, Glaeser et al. [10] focus on predicting home val-
ues from images of homes to identify architecturally distinct
features and find aesthetics and appearance play a small but
statistically measurable role in property pricing. Naik et al.
and Donaldson et al. use computer vision models to docu-
ment urban change within American cities [17] [6]. Both
show that neighborhoods with high education levels and
high population density experience improvements in physi-
cal appearance. Conversely better physical appearance pre-
dicts improvements in economic outcomes.

One component of such physical appearance is architec-
tural style. That is the topic of a recent paper by Lindethal
et al. who test the impact of architectural style on prop-
erty values using various ML techniques [16]. Specifically
they classify images using a large deep CNN pre-trained om
ImageNet called Inception-v3 and fine-tune it on human-
labeled data. They find that rare architectural styles have
the biggest impact of price showing that visual information
that is unlikely to be captured in standard datasets is an im-
portant component of the property market.

Arietta et al. [1] focus on using visual elements from
street-level images of American to predict non-visual statis-
tics, such as the crime rate, housing prices and population
density. The authors obtain the best results in predicting
crime, and compare these results to the predictions from

Mechanical Turk workers and find significant increases in
accuracy of around 33%. However, the model perfor-
mance appears to be somewhat city-specific with signifi-
cantly worse across-city performance.

Recently, Xu et al. [24] study the extent to which subjec-
tive and objective measures of street quality explain prop-
erty values. Subjective assessments come from surveys and
objective assessments come from features extracted from
street-view imagery. The paper’s key finding is that sub-
jective assessments add substantial predictive power to ML
models on top of image data. This suggests that though im-
age data is quite successful in predicting variation in prop-
erty values there is much information it does not contain.
The implication for our study is that the tabular economic
data may not be fully captured by the image data.

3. Methods
3.1. Models
3.1.1 Baseline

We utilize two sources for our baseline. First, we compare
our preferred models with naive, simple alternatives. First
we use a logistic regression on non-image data. And second
we use a basic two layer convolutional network where each
layer corresponds to a block of batch normalization (BN),
3 x 3 convolution, ReLU, and 2 x 2 max pooling. This is
then inputted to a dropout layer and a final fully connected
layer.

Second, we run a multinomial logit using only our tab-
ular data of economic indicators and compare this with our
preferred image-based models. We anticipate that this base-
line model will perform better than the computer vision
specification alone. However, we are principally interested
in combining the models on the image and tabular data to
form an ensemble method.

3.1.2 Vision Transformer (ViT)

Our main model is a Vision Transformer (ViT), first intro-
duced by [7] as an adaption of the seminal Transformer ar-
chitecture by [21] from natural language processing. We
provide a visual overview of this model in Figure | using
an illustration from [7].

The standard Transformer is designed for text data and
thus accepts a one-dimensional input of word token embed-
dings. To adapt a Transformer to image data, the ViT is
modified to take in a transformed two-dimensional input.
In particular, for a three-dimensional image & € R *WxC
where H and W represent the height and width respec-
tively and C' the number of channels, ViT flattens it into
a sequence of image patches x,, € RHEW/PH)x(P*C) gych
that P represents the desired resolution of each image patch.
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Figure 1. Vision Transformer (ViT) Architecture [7]

Consequently, N = HW/P?. These patches are then flat-
tened using a linear projection into N x D space to obtain
a feature extraction zg:

20 = [mclass§ iL’;E7 cey wévE] + Epos (1)

for E € RE°O)XD gpnd E,,s € RV+HDXD 3 matrix of
positional encodings. We denote zg = Tlass-

This value is then taken as input to the model en-
coder, consisting of alternating layers of multi-headed self-
attention (MSA) and multi-layer perceptron (MLP) blocks,
which contain two layers and a Gaussian Error Linear Unit
(GELU) activation function each (see Figure A.1). Note

GELU(z) =2P(X < z) = 2®(x) =~ 2o (1.7022) (2)

where ®(z) represents the standard Gaussian CDF [12].
The MSA layer is defined as in [21] using scaled dot prod-
uct attention, that is for queries g, keys k, and values v:

g, k,v] = 2zUg, Uygio € RD*3Dxk

gk’

A = softmax( ) A € RVXN 3)

$

SA(z) = Av

where D, = D/k. Intuitively, A captures the pair-wise
similarity between elements. Then MSA with k attention
heads is just a concatenation of these k outputs linearly
projected back into D by a matrix U*2x*D Before each
block, a layernorm (LN) is applied and residual connections
are introduced after each block [2,23]. Thus, for each layer
[l €1,...L, the model calculates

z] = MSA(LN(z;-1)) + 211
z; = MLP(LN(z})) + 2;.

Finally, to calculate the image representation, a LN is ap-
plied to the last class token: y = LN(29).

One major benefit of this transformer architecture is that
it has significantly less image-specific inductive bias than

CNN models. This is because a convolutional layer is lo-
cal and dependent on the neighborhood structure within the
two-dimensional H x W space (though we have seen that
with deep CNNs the overall receptive can be approximately
global). In contrast, since MSA is fully connected, these
self-attention layers are fully global.

3.1.3 ResNet

In addition to ViT, we use a variety of convolutional meth-
ods. The first is ResNet, which presents a residual learning
framework to allow deeper neural networks [1 1]. The main
challenge for deep neural networks in computer vision prior
to the introduction of ResNet was not overfitting but instead
that they were difficult to successfully optimize. To address
this, ResNet introduces residual “shortcut” connections, as
illustrated in Figure 2.

weight layer

x
identity

Figure 2. An example of a residual connection [11]

Formally, these connections allow the model to by-
pass the non-linear transformations by providing an identity
function, that is on the [-th layer, we have

x; = Fi(x—1) +x1-1.

If we consider H; to be the underlying mapping from x;
to x;_1, then we are effectively trying to learn the residual,
ie. Fi(x,—1) = Hi(x;—1) — x—1. This is hypothesized to
address the issue as solvers oftentimes have issue with many
consecutive nonlinear layers. For an in depth discussion of
the network architecture used, see [11].

3.1.4 DenseNet

We also use a DenseNet, a model whose signature contribu-
tion is that each layer in the network is not only connected
to the one before it but to all previous layers [13]. As a re-
sult, all of the feature maps from the previous layer are used
as in inputs for a given layer. Specifically, the I-th layer in
the network is defined as

x; = Hi([xo, ..., xi-1]), €]

where H; represents a composition of operations. This
dense connectivity has led to the model being referred to
as a DenseNet.

In their implementation, the authors define H; as the se-
quence: batch normalization (BN), ReLU, and a 3 x 3 con-
volution. Placed in between these dense blocks are transi-
tion layers which correspond to the composition of BN, a



1 x 1 convolution, and a 2 x 2 average pooling layer. Gen-
erally, these transition layers are also used to downsample
the image with a compression factor. Overall, this architec-
ture addresses the vanishing-gradient problem common in
deep neural networks and also “strengthens feature propa-
gation” [13].

Figure 3. DenseNet architecture [13]

3.1.5 Visual Geometry Group (VGG)

Additionally, we include the Visual Geometry Group CNN,
whose main contribution to the computer vision literature
— aside from strong performance — revolves around depth
and the convolutional filter size [20]. In particular, VGG
demonstrated that a neural architecture with relatively small
filters that is sufficiently deep actually has superior perfor-
mance to shallower models using large filters. In particu-
lar, with sufficient depth these small filters have an iden-
tical receptive field on the original image as the large fil-
ters but require fewer parameters. For example, note that a
stack of three 3 x 3 layers have the same receptive field as
one 7 X 7 convolutional layer; however, they only require
3(3C)? = 27C? weights as opposed to (7C)? = 49C2,
which is 81% larger [20].

3.1.6 Additional CNNs

We include two additional CNN-based models, AlexNet
and SqueezeNet, during our testing. However, we do not
use them on our full specification, and consequently, their
description is omitted here in favor of brevity. For more
information about these models, see [15] for AlexNet, and
[14] for SqueezeNet.

3.1.7 Ensemble

In this model, we combine the image and the tabular data.
We do so by taking the the logits from the best perform-
ing neural model (the ViT) and appending it to the tabular
data before running a multinomial logit. This effectively in-
creases the number of regressors from 4 to 24 because we
have one logit for each class label. This enables us to eval-
uate what residual information is contained in the images

that cannot be explained by traditional economic variables
and vice versa. Thus, in this component of our technical
approach, we are effectively performing an ablation study,
where we remove one source of information at a time to
uncover the marginal value of each.

3.2. Evaluation Method

We formulate our question as both a classification and a
regression task. For classification, we convert our target into
an ordinal variable by binning it into twenty classes. This
allows us to use multi-class cross entropy loss with mean
reduction defined as follows:

N 1
Uz, y) = ZNiln
n=1 n=1 Wy, (5)
g ()

C
> et €XP(Tnc)

Here, x is the input, y is the target, w is the weight, NV
represents the batch size and C' the number of classes. We
define class weights w, according to the inverse distribution
of classes in our training sample. This ensures meaningful
predictions, particularly given the unbalanced nature of our
labels.

For the regression task, we utilize a mean-squared error
loss (squared L2 norm) defined as follows:

1 N
Z(T,y) = N Z(xn - yn)2 (6)
n=1

Here, z is the input, y the target, and IV the batch size.

4. Dataset and Features
4.1. Data

We use the University of Central Florida (UCF) Cen-
ter for Research in Computer Vision’s Google Street View
dataset [25]. The UCF dataset contains approximately
62,000 images from the Google Street View API and covers
the downtown and neighboring districts of three American
cities: New York City (specifically Manhattan); Orlando,
FL; and Pittsburgh, PA. The spatial coverage of these im-
ages is visualized at the zip code level in Figure 4.

Each image has latitude and longitude coordinates and is
tagged with its neighbors. For each location in the dataset,
five images, each from different viewpoints, are included:
four oriented in accord to the cardinal directions and one to
the sky'. Figure 5 presents an example of these images.

We train all of our models on images taken from the
north perspective. We then formulate two separate vali-
dation samples, one composed of a subset of these north

IThere are actually six images for each location as the north view is
duplicated.
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Figure 5. Example images from our dataset [25]

images (hereon “North”) viewpoint and one from the east
(hereon “East”). We chose not to train on a sample com-
posed of all of the cardinal directions, in order to prevent
the model from simply memorizing different images. This
is particularly important as the data contains images that
are geographically proximate. So it is likely that a valida-
tion image from the same viewpoint would be very simi-
lar to data the model was trained on. This concern is sup-
ported when we compare the validation accuracy from the
North and East sample in the results section — accuracy is
far higher on the North dataset than the East dataset.

Our target variable is the growth rate in Zillow’s home
price index [26] between February 2020 and 2022. The
variation in this variable across locations is largely depen-
dent on the differential impact of Covid across geographies.
Indeed we find a 81% correlation between the post-Covid
growth rate and a the difference in growth rates post-Covid
vs pre-Covid. This suggests that the variation in hous-
ing prices does not follow pre-Covid trends. In addition,
we collect traditional economic predictors of home price
changes like population density, distance from city center,
the share of teleworkable jobs and the number of business
establishments. All economic data is collected from the US
Census Bureau [19] except for the share of teleworkable
jobs which is collected from [5].

4.2. Preprocessing
4.2.1 TImages

Before an image is input to the model for training
or validation, we apply various transformations. For
ViT we use its feature extractor which resizes the im-
age to 224 x 224 using a bilinear resampling method
and then normalizes the pixel values across the RGB

channels, each with mean 0.5 and standard deviation
0.5.2  For all of our CNN models, we cross-validated
the performance obtained using the ViT feature extrac-
tor versus a manual combination of transforms incorpo-
rating randomness — namely RandomResizedCrop and
RandomHorizontalFlip — and found the feature ex-
tractor lead to superior performance.> Hence, for all models
we use the same feature extractor to resample the image to
be of size 224 x 224 and normalize its pixel values.

4.2.2 Target Interpolation

Although the economic indicators that we collect, including
the Zillow home value index, are aggregated at the zip code
level, the actual images are at a sub-zip code level, as they
have latitude and longitude coordinates. To address this, we
took an image’s coordinates and found the zip code with the
minimum Euclidean distance from the image with respect
to the zip code’s centroid. Our initial dataset consisted of
10,343 locations from 38 zip codes. The distribution of lo-
cations over these zip codes is quite skewed — the three most
frequent zip codes have 2,631, 1,324 and 681 locations re-
spectively. This raises the concern that the models would
learn the image features of specific zip codes rather than
the underlying relationship to predict home price changes
in general. In response, we smooth out our labels using the
following approach, as outlined in [!].

The core of this approach is interpolating a smooth func-
tion over latitude and longitude coordinates after fixing the
known values of zip code centroids. Our interpolation
method takes a weighted sum of radial basis functions to
learn the value of any missing points as described in [22].
Here, our function is the inverse multiquadric function

1
f(r) ST ()
where r represents the Euclidean distance between loca-
tions. In addition, € is a parameter to control falloff, which
we set equal to 2 in accord with [1].

We visualise the distribution of labels after our interpo-
lation below. The distribution is roughly trimodal after in-
erpolation and becomes more balanced with more weight
on larger values after interpolating. One reason for this is
there are many coordinates towards the edge of large zip
codes. Such points would initially be assigned the value as-
sociated with a distant centroid. After interpolation, their
values would be weighted more towards other nearby zip
codes, which more accurately captures the market dynam-
ics of housing.

Upon obtaining the interpolated values, in order to spec-
ify a classification problem, we discretize the target variable

2 Accessed through Huggingface.
3See pytorch for this implementation.
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Figure 6. The distribution of home price changes after interpola-
tion

into buckets of one percentage point. For example, a target
value of 1.5 % would be placed into the bin [1, 2] and given
an associated class label.

5. Experiments/Results/Discussion
5.1. Experimental Details

We run our experiments using the AWS setup provided
by the CS 231N course, which means a EC2 G4dn.xlarge
instance (4 vCPUs running one NVIDIA 4 GPU with 16 GB
of memory). We developed our own Github repository and
made use of pytorch and Huggingface model implemen-
tations. We trained all models with a batch size of 32 and
fine-tuned for 10 epochs. We used Adamw to set the learn-
ing rate with a initial values of 1r=1e-4 and eps=1e-8.
The learning rate was reduced after hyperparameter tuning
to enable more stable updates. We were concerned about
overfitting in our image models, and thus chose Adamw for
our optimizer as it uses weight decay. As the majority of
our methods are pretrained, the only hyperparameter tuning
we did was for the learning rate as well as for the filter sizes
in the baseline convolutional model.

To evaluate our model performance, we report the overall
accuracy A for all models. In addition, for the ensemble
model we include the precision P; and the recall R;. These
are defined as

P _ TP; R. — TP;
7 TP+ FP’ 7 TP;+ FN;’
where j represents a class, and T'P; represents the number

of true positives, T'N; true negatives, F'P; false positives,
and I'Nj; false negatives, all for class j.

5.2. Results
5.2.1 Image Results

We first run all of our models on a smaller subset of images
with approximately 1,000 unique locations for 10 epochs.
This sample results in a binned target variable of seven
classes. Note, this is also the sample we tune our hyper-
parameters on. We chose to perform this analysis on the
smaller sample in order to conserve compute and our AWS
credits and we additionally hypothesized that the perfor-
mance on this smaller sample should be representative of
the overall performance. The validation accuracy results for
the models are displayed in Table 1.

Table 1. Comparison of our models (small sample)

Model Validation Accuracy (%)
North East
Baselines
Random Chance 14.28 14.28
Logistic Regression 51.82 28.27
Two-Layer CNN 71.59 31.40
Image Models
AlexNet 65.51 30.52
DenseNet 88.07 39.39
ResNet 87.16 38.62
SqueezeNet 52.49 25.68
VGG 79.23 43.32
ViT 89.02 48.92

As can be seen from Table 1, our top performing mod-
els are ViT, DenseNet, ResNet, and VGG, all of which
significantly outperform our baseline models. This is true
across both validation samples (North and East). Supris-
ingly, the simple two-layer CNN actually performed better
than AlexNet and SqueezeNet. Although we performed pa-
rameter search, this suggests that likely some input param-
eter to these models was suboptimal. Consequently, we do
not consider them anymore.

Notably, the performance on the East sample is substan-
tially lower — less than half — of the performance on the
North sample. This confirms our concerns that there is
likely great similarity between the images from the same
viewpoint given their geographic proximity, and conse-
quently, the models are not learning a legitimate mapping
from images to home values but are simply “memorizing”
the data. This is further supported by poor out-of-sample
performance of the North model, omitted for brevity.

We take the four best performing models as well as our
baselines and run them on the full sample of data. The full
sample of data contains almost 10,000 images and yields a



20 class binning of the target variable. The results on this
sample are shown in Table 2.

Table 2. Comparison of our models (full sample)

Model Validation Accuracy (%)
North East
Baselines
Random Chance 5 5
Logistic Regression  50.45 14.3
Two-Layer CNN 73.5 15.23
Image Models
DenseNet 74.78 27.46
ResNet 77.34 29.38
VGG 74.53 26.93
ViT 90.56 32.59

Interestingly, the top level validation accuracy in this ta-
ble among both the North and the East samples decreased
across almost all models. This is likely explained by the
introduction of significantly more classes — in particular,
adding the remaining images expanded the scale of the un-
derlying continuous target value substantially. Nonetheless,
while the small sample did not perfectly resemble the full
sample, the overall results are encouragingly similar.

In Figure 7, we report a confusion matrix using the ViT
predictions on the validation set. We normalize the cells
by their row — that is, true class — and so, a cell of 1 indi-
cates 100% of the predictions in that row were of that class.
The darker areas along the diagonal suggest that our model
does successfully learn about the relationship between the
city images and the target variable of home prices during
the COVID-19 pandemic, as classes are most often classi-
fied as themselves or misclassified in a neighboring class.
Since our class variable is ordinal, misclassifications that
are proximate to the true class are still more “accurate” than
those that are far.

5.2.2 Tabular and Ensemble Results

As a comparison for our image-based results, we also run a
multinomial logit regression on our tabular economic data
of the form y; = f(X;) where y; is one of 20 bins for
the home price index percent change and X; is a vector of
four variables: population density, share of workers who
can WFH, number of business establishments, and distance
from the central business district. We use the 2-D smooth-
ing method to construct interpolated values for all image
locations in our dataset. We split our dataset into a training
set with two-thirds of observations and a validation set with
one-third of observations and achieve a validation accuracy
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Figure 7. The confusion matrix for the Vision Transformer on East
input data. The bins correspond to ranges of interpolated percent
change in house prices post-COVID

of 45%. This interestingly outperforms the results from our
ViT of 33%. Our ensemble model which combines both the
output from our transformer with our tabular economic data
outperforms both and achieves 51% accuracy.

These results suggest that image data is not everything
— there is a lot of information contained in the tabular eco-
nomic data relevant to our problem that cannot be learned
from our vision models. Still, and perhaps our most inter-
esting result, image data does contain unique information
not found in the tabular data. That is shown by the ensem-
ble outperforming the other two models.

Table 3. Ensemble Model Results

Model Validation Accuracy (%)
Weighted avg Weighted avg Raw
Precision Recall Accuracy

Model

Logit 31 45 45

ViT 33 33 33

ViT + Logit 43 51 51

5.3. Saliency Maps

To better understand how our model generates predic-
tions from our input images, we generate saliency maps for
a few example inputs using our trained ResNet. Saliency
map input images were resized, center cropped, and normal-
ized with the same transformation as validation set images.
To generate the saliency map, we perform backprop on the
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Figure 8. A image and saliency map pair for a street corner in
SoHo, New York City

output from the model and plot the absolute magnitude of
the gradient.

Our salience maps reveal that the model seems to gauge
the height of buildings and takes particular interests in sky-
lines. In 9, for example, we see the model focuses the
space above buildings. This pattern of salience suggests
that skylines and building height are an important factor
in describing the economic agglomeration that occurs in
cities. As discussed earlier, taller buildings tend to correlate
with office jobs and high skilled labor. Generating a mea-
sure of building height and skyline characteristics would be
very difficult using traditional econometric techniques. Our
salience maps therefore validate that deep learning for this
vision task provides valuable information about cities.

In 9, in particular, we focus on the skyline seen in the
distance, since it provides spatial information about the pho-
tographed west side neighborhood in New York City’s prox-
imity to downtown’s business district.

If our perspective, however, does not include skyline,
then the model must focus on other parts of the image. In
8, we see how a building blocking the skyline in the cen-
ter of the image pushes the model to focus on the corner of
the sidewalk and the skyline visible in the center right and
upper left of the image.

5.3.1 Regression

Our question has a more natural formulation as a regression
problem, as our outcome variable is continuous. However,
we encountered significant difficulty with this approach.
Most models struggled to learn and yielded predictions with
very little separation. In particular, the predictions were al-
most always extremely tightly clustered around the mean.
Below we discuss some hypotheses for this behavior. L2
loss is a much more unstable and more difficult quantity to
optimize than cross entropy loss, which was used for the
classification. This makes intuitive sense: the precise val-

Figure 9. A image and saliency map pair for a street on the lower
West Side, New York City

ues of the predictions do not matter in the classification, so
long as the correct class receives the highest score. In con-
trast, the magnitude of the score is the very quantity we are
trying to accurately predict in L2 loss. This makes the L2
loss formulated in the regression problem significantly less
robust. Consequently, it seems likely that we have insuf-
ficient data and computational power to properly learn the
continuous mapping from images to our targets.

Another possibility would be that, rather than truly pre-
dicting the change in home price post-COVID shock, our
model learns to classify images to some zipcode and then
simply bins the image appropriately. If this were the case,
we would expect far worse performance in the regression
setting. Further, the large decrease in validation accuracy
when working with East inputs as opposed to North in-
puts suggests that we may have overfit some of our mod-
els. However, the ordinal approach that we took does not
suggest that this is fully the case. In our confusion matrix,
we can see our errors down the diagonal, which suggests
the model is in fact learning. Since we have large vari-
ation in the type of images, however, it may be the case
that certain chunks of our data that do not contain useful
features (for example, images under bridges, images with
major instances of occlusion, etc) are simply classified to a
bin, while other images allow for meaningful classification
of price change.

Additionally, the position of the sun, how the pave-
ment looks, different standards for scaffolding, bollards,
and parking lines may provide the model with significant in-
formation about what bin the image belongs to without truly
providing much information about the underlying economic
features. Some of these features in images, such as the po-
sition of the sun, dramatically change with different cam-
era positions, whereas road infrastructure and street signs
change across cities. To overcome these pitfalls, future
work should seek to employ more data from more metro
areas with greater variation in price change and different



learning techniques that may yield better regression out-
comes.

6. Conclusion/Future Work

We employ a novel, computer vision approach to under-
stand how the Covid pandemic affected housing market dy-
namics. By utilizing computer vision techniques, our mod-
els are able to improve the prediction of house price changes
compared to just using tabular economic data. This shows
the value of information contained inside the street view im-
ages of the cities.

We find that an efficient vision transformer produces the
best results, with 89.02% accuracy validation accuracy fac-
ing north (which is likely overfit because our training data
faced north, too) and 32.59% accuracy with images that face
east (a more robust result). By comparison a multinomial
logit trained on tabular economic data achieved 45% accu-
racy on held-out data. Our ensemble model which combines
both the output from our transformer with our tabular eco-
nomic data achieves 51% accuracy.

One reason the vision transformer worked well was that
the transformer was pre-trained. As aresult, we were able to
extract features more easily from our images. Our models,
however, were unable to produce good results in the contin-
uous setting, suggesting future work should seek to improve
the model architectures and draw from richer data so that
continuous predictions can be made. In addition, future re-
search should consider expanding the sample of cities to be
more inclusive of the greater United States to better capture
national trends.
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