Crowdfunding: Predicting Kickstarter Project Success

S. KHOSLA, J. REINECKE, and B. WITTENBRINK, stanford University, USA

Using over 220, 000 project proposals scraped from Kickstarter, we predict
whether a Kickstarter project proposal will succeed or fail in achieving
its fundraising goal using only information from project launch. We
evaluate the performance of various machine learning models for these
predictions based on the project category, fundraising goal, and short
descriptions of the proposed product. We achieve an accuracy rate of 83%
with our best model.

1 INTRODUCTION

Kickstarter, founded in 2009, is an online platform that acts as
a centralized marketplace to connect “creators” with the capital
to pursue their visions. Creators post their project ideas on the
platform and collect the necessary funding from their “backers.”
Often, these donations take on the form of an investment, with
the creator promising premium content for the backers. As of Nov.
2020, over 500,000 projects have been launched on Kickstarter,
with over five billion dollars raised.

In this paper, we explore the use of Kickstarter project data to
predict campaign success. In particular, we answer the question:
given information about a Kickstarter project’s fundraising goal,
category of product, brief project descriptions, and more, can we
accurately predict the outcome of the campaign? We employ a
variety of learning models, including logistic, lasso, and ridge
regression, random forests, neural nets, and gradient boosting
algorithms to answer this.

2 RELEVANT LITERATURE

There is a diverse literature focusing on the success of Kickstarter
projects. [Genevsky 2017] approach the topic through the lens
of neuroscience, analyzing brain activity in an fMRI, while many
papers in linguistics have used quantitative and qualitative lenses
to focus on the role of specific phrases in a project description.
Within the computer science literature, classification accuracy
ranges between the low 70s and the high 80s (in percent) depend-
ing on the variables included, methods used, and the timing of
the project since launch (see references for a complete list). For
example, [Greenberg 2013] see the best results using decision
trees while [Chen 2013] utilize a Support Vector Machine (SVM).

However, a substantial portion of the literature focuses on
project success probabilities over time, incorporating temporally-
dynamic information such as the amount raised or social media
interactions (see [Etter 2013], [Mollick 2015], and [Zhao 2017]).
Of the few papers that focus on pre-launch factors, a variety of

Authors’ address: S. Khosla; J. Reinecke; B. Wittenbrink, Stanford University,
Stanford, California, USA, 94305.

methods and features are used. [Cheng 2019] formulate a multi-
modal deep learning algorithm using both text and images while
[Desai 2015] use natural language processing (NLP) methods to
classify project outcomes. While the impact of post-launch fac-
tors are certainly important, our interest lies more in predicting
the outcome of a project given its initial static properties. This
has important implications for both creators and Kickstarter — as
such knowledge would enable creators to more efficiently allocate
their time and effort while also allowing the platform to prioritize
projects with a higher likelihood of a success.

3 DATA & FEATURES
3.1 Data

Projects on Kickstarter combine a variety of data types. Each
project has a funding goal and a duration. Projects generally con-
tain text descriptions and backstories as well as visual information,
such as photos and videos. Moreover, projects are connected to
user profiles (i.e., creators) that contain short biographies, previ-
ous Kickstarter activity, and external links to various social media
platforms. Kickstarter also displays the amount of money raised
to date and information about the backers, which includes their
location, whether they are new or returning Kickstarter users, as
well as any comments they might have left on the project page.

We use a well-maintained repository containing data for over
250,000 Kickstarter projects. The authors designed a robot to crawl
Kickstarter each month and scrape the labeled HTML output into
CSV files. This output contains all the information we use for this
analysis, including the funding goal, project categories, and a short
project blurb. Although the data is stored as a CSV, many of these
features are stored as JSON strings, which we expand to obtain our
desired project variables. We attempt only to select information
that would be available at the time of launch. However, since our
data comes from a monthly snapshot, if a creator were to edit their
project metadata after launch, we would not be able to detect this.
Luckily, many project aspects cannot be changed after launch,
including the funding goal. Due to technological constraints with
the HTML scraper, our dataset does not contain the longer-form
project description (“story”).

For our main dataset, we use the projects contained at the above
repository starting with the April 2019 link up to the April 2021
link. However, these files are largely cumulative and thus contain
significant overlap. We deduplicate projects by removing rows
that share the same project name, blurb, launch date and deadline.
Our resulting data sample contains 221,248 Kickstarter completed
Kickstarter campaigns. Given this relatively large sample, we use
a 70-30 train test split. Thus, our train and test sample contain
154,873 and 66,375 projects, respectively. Our selected metadata

includes the target funding goal in USD, the launch date and
deadline of the project, the project blurb, as well as categorical
information such as the project category and the location of the
creator. Metadata that would not be available at the time of launch,
such as the number of backers, the amount of funding received
thus far, time remaining, etc. is excluded.

Table 1. Summary statistics of numeric variables, train sample

Statistic Outcome Goal (USD) Blurb Length Name Length
Mean 0.6 33,943.73 108 35
Median 1 4,820.28 120 34
Min 0 0.01 1 1
Max 1 112,339,607 151 85

Table 2. Summary statistics of categorical variables, train sample

Variable Unique Levels PpL Mean PpL Min PpL Max
Currency 15 10,325 14 106,524
Country 25 6,195 13 106,524
Category 171 906 5 5,280
Parent Category 15 9,660 1,218 19,527
Location 13,771 11 1 6,905
Location Type 9 17,191 1 143,863

Note: PpL abbreviates Projects per Level.

3.2 Categorical Encodings

As discussed above, each Kickstarter project is associated with a

variety of categorical variables, including the project category (e.g.
Board Games, Documentary, etc.) and the parent category (e.g.

Gaming, Film, etc.), the creator’s city and the country of origin as
well as the currency of the donation. We design a rich encoding
for these categorical features.

First, we calculate target mean encodings for each categorical
variable, that is, given a categorical x and target y, we replace
each distinct level j in x with its conditional mean of y: §; =

n lx=jYi

i=1 lxi:j
with the overall, unconditional mean. To avoid data leakage, all
estimates are obtained "out-of-fold", i.e. for a given project in fold
1, the mean encoding is calculated based on the average of the
project outcome in folds 2-5. Second, we introduce "out-of-fold"
mean encodings of the same categorical features using the project
funding goal. We also specify the difference between a project’s
funding goal and the mean goal for each categorical as features
to make this relative difference explicit. Finally, we introduce
one-hot encodings of the project category and parent category
variables. We do not add these for every categorical variable as we
hypothesize the two category variables to be most important and

. Levels with fewer than 1,000 projects are replaced

Khosla, Reinecke, and Wittenbrink

we wish to preserve the cardinality of our feature space, e.g. one-
hot encoding the location variable would introduce over 10,000
additional features, as seen in Table 2.

3.3 Text Encodings

Moreover, our dataset contains a small description ("blurb") for
each project. At the most basic level, we use the character length
of this blurb as a feature. In addition, we employ a variety of
text-modeling approaches to extract valuable information from
the blurbs. These methods include unigram count matrices (with
a tf-idf transformation), Latent Dirichlet Allocation (LDA), word
embeddings (with Word2Vec), and sentiment analysis to provide
a positivity rating of the blurb (with CoreNLP). All methods re-
ceived a processed version of the blurbs, with stopwords and
non-alphanumeric characters removed.

3.3.1 Unigram Counts. The simplest text encoding approach is
to construct a counts matrix of the occurrences of every unigram
(token) in our corpus for each project blurb. We then introduce
a tf-idf transformation that weights this matrix according to the
relative frequency of a token within a blurb (tf) and across blurbs
(idf). For example, a word that is common to all blurbs (say "Kick-
starter") would not convey much information. However, the di-
mensionality of such a matrix (equal to the cardinality of tokens)
is substantially too large. Thus, we compressed this to a single
feature by running a Multinomial Naive Bayes classifier on the
counts matrix (see Section 4.1 for more information) to obtain the
probability of project success.

3.3.2 Latent Dirichlet Allocation. LDA is a generative model that
allows for the unsupervised classification of texts according to a
predefined number of clusters ("topics"). The model assumes each
project blurb is a "bag of words" and that there exist two latent
variables — the topic distribution for each blurb and the topic for
each word — which influence the selection of words in a blurb.
LDA imposes a (often symmetric) Dirichlet prior on the topic
mixture proportions and runs an EM algorithm, marginalizing
over the latent variables. Thus, the model learns a set of weights
for each topic, which we can use to predict the probability that
each project blurb belongs to each topic. In turn, we can use these
project-specific topic probabilities as features in our main model.

3.3.3 Word Embeddings. Word embedding is a NLP process that
captures the similarity of semantic meanings between words. The
main intuition is that words that occur frequently together are
likely related. There are two different architectures used: 1. Con-
tinuous Bag of Words (CBOW) where neighboring words in a
sliding window are used to predict the center word and 2. skip-
grams which does the reverse. Both architectures use stochastic
gradient descent to update the probability of the target word(s)
given the word(s) in the window. Training such a model yields
a low-dimensional vector representation capturing the semantic
difference between words, such that similar words have similar

Crowdfunding: Predicting Kickstarter Project Success

vectors. Thus, we can compute the average word vector for each
project based on the words in the blurb and use this as a feature.

3.3.4 Sentiment Analysis. The “attitude" or “feel” of a blurb can
significantly impact whether a user donates to a campaign. Here,
we use Stanford CoreNLP to analyze the sentiment of each blurb
and assign it a score between 0 (least positive) and most positive
(4). The score is used as a feature in our models to confirm whether
there exists a positive correlation between more positively-framed
campaigns and success rate. We analyze each sentence in a blurb
independently and provide a score for the overall blurb that is the
average sentiment across all sentences in a given blurb.

4 MODELS

We disccuss the models we use with some brief mathematical back-
ground here. We define our task as a binary classification problem,
where we predict whether a Kickstarter project will “succeed” (1)
or "fail" (0) in meeting its fundraising goal. For all specifications
with continuous outputs, e.g. linear or logistic regression, we use
a threshold of 0.5 to obtain our predictions.

4.1 Multinomial Naive Bayes

Multinomial Naive Bayes is a simple supervised learning algo-
rithm based on the assumption that token occurrences are drawn
from a multinomial distribution and are conditionally indepen-
dent given the outcome. The model is parameterized by ¢, as well
as vectors @.,|y=0 and ¢,,|y=1 where w is an token in the corpus.
These estimates are obtained by counting the relative frequencies:

n

Z?:l 1yl-:jxi,w Q{) =1 191':1
y= ———

n b
i=1 2w Lyi=jXiw n

Pwlj =

where x; ,, represents the number of of occurrences of token w in
observation i and j € {0, 1}.

4.2 Linear Probability Models

4.2.1 Ordinary Least Squares. The least-squares cost function is
definedas J () = 1 37, (ho(x?)—y D)2 where ho(x)) = 67 x (D).
We minimize this with gradient descent. Namely, we start with
some initial 6 and repeatedly perform the update 0; := 0; —
aa%j J(6) until convergence, where « is the learning rate.

4.2.2 Lasso and Ridge Regression. Lasso and Ridge regression
follow the same paradigm as OLS with added penalties in the cost
function. Specifically, Lasso adds the [1 penalty, A Zf’:l |w;|, while

Ridge adds the [2 penalty, A ijzl WJZ..

4.3 Logistic Regression

Logistic Regression works similarly to the linear regression meth-
ods but here, instead of using a linear hypothesis function, we use

the sigmoid function hg(x) = 1+CXP(+9TX>'

4.4 Support Vector Machines

SVM finds the maximum margin hyperplane in our feature space
where an outcome is assigned according to y = sign(K(w, x) + b)
where a negative y value indicates “failure”, while a positive y
value indicates a “success". This problem can be reduced to an
optimization problem where we seek to find min,,, % [|w]|? subject
to the constraint y(i)(wa(i) +b) > 1fori=1,..,n where the
kernel K(w, x) is the inner product of w and x.

4.5 Random Forest

Random Forest is an ensemble method that "bags" decision trees,
combining their individual predictions by "voting” (in classifica-
tion problems) to obtain an overall inference. The randomness
introduced by the algorithm - e.g. choosing from a random subset
of the overall features at a given split — prevents the individual
trees from being too similar, thereby allowing it to explore more
of the overall feature space, and thus ensuring the subsequent
aggregation of the trees is more robust.

4.6 Gradient Boosting

Gradient Boosting is an ensemble method that finds the opti-
mal hypothesis function in an iterative manner by fitting a weak
learner on the residual at each step, thereby attempting to correct
the errors from the previous step. We use gradient tree boosting
which fits a decision tree at each iteration. As this will be our main
model, we present this more explicitly: for a differentiable loss
function L and an initial hypothesis function f;, gradient boosting
updates at step m by calculating

M ()

fitting a decision tree g, (x;) to these residuals, and setting f;, (x;) =
fin=1(xi) + AYmgm(x;i) where y,, represents the step multiplier and
A the learning rate. We use a binary log loss function defined as
Li = yilog f(xi) + (1 — yi) log(1 — f(x:)).

4.7 Dense Neural Network

Neural networks allow for the learning of complex non-linear
models through a series of connected layers. In a dense neural
network, every node is fully connected to all of the nodes in the
previous layer. Layer [receives the input ("forward-propagation")
all = £(3, w;al"! + b) where f specifies the activation func-
tion. We use a Scaled-Exponential Linear Unit (SELU) activation

ifx>0

SELU(x) = A {x :
ifx <0

aexp(x) —a

and a sigmoid activation. The neural net then "back-propagates"
using the Adam optimizer with a binary log loss function.

5 EXPERIMENTS
5.1 Model Evaluation Metrics

To evaluate ouor model performance, we report the overall accu-
racy A, the precision P; and recall R; for both outcome classes,
and finally the F-1 score F1. These are defined as
TP TP PR
Pi=—r—r, Rj=7—7——, =2 ,
TPJ+FPJ TP]+FNJ P;+Ry

where j € {0,1} and TP; represents the number of true positives,
TN true negatives, FP; false positives, and FN; false negatives,
all for class j. While the accuracy places an equal importance
on TP and TN, the F-1 score places a greater emphasis on false
predictions (FN and FP). Given that our data is not especially
unbalanced and the costs associated with a false prediction are
not grave (like, say, with coronavirus testing), we believe that
accuracy is an important, intuitive metric. However, the F-1 score
is more interesting from a business perspective, as it more harshly
penalizes false predictions, and places less value on true negatives.
Thus, we consider both throughout the discussion of the results.

5.2 Samples

We have five main samples, each including the same project
metadata-related features but with different blurb encodings:

(1) Metadata

(2) Metadata + Naive Bayes (NB)

(3) Metadata + NB + CoreNLP Sentiment (NLP)

(4) Metadata + NB + Latent Dirichlet Allocation (LDA)
(5) Metadata + NB + Word2Vec (W2V)

All samples consist of the project metadata, as the project blurb
observed in our data is not rich enough to perform well on the
prediction task independently. Nonetheless, we believe that even
this limited text description likely contains relevant signals that
can make an impact on the margins.

5.2.1 Text Models. We now detail the construction of these text
models and include their accuracy to illustrate their baseline per-
formance. First, for our Naive Bayes classifier we use unigram
occurrences and apply a tf-idf transformation. Fitting this to the
train data, we obtain probabilistic predictions for the success of
each project. Naive Bayes attains a classification accuracy on the
test sample of 0.70. Second, we use Stanford CoreNLP to anno-
tate the blurbs, requesting a sentiment value between 0 and 4 for
each blurb, averaging across all sentences in a given blurb for the
overall score. Fitting a simple logistic regression between the sen-
timent score and project outcome, yields a 0.6 accuracy on the test
data. Third, for the construction of our LDA model, we drop all
tokens, which occur in fewer than 10 blurbs or more than 35% of
blurbs (conceptually similar to tf-idf). We specify 20 latent topics
with identical priors, as this is on the order of Kickstarter’s parent
project categories (15) and it has the best predictive accuracy (com-
pared with 5, 10, 50 and 100 topics) with a score of 0.60. Finally,

Khosla, Reinecke, and Wittenbrink

for our word embeddings, we use Google’s pretrained W2V model
with 300 dimensions from a 100 billion word Google News corpus.
The training architecture of this model is unknown (i.e. CBOW
or skip-grams). For each blurb, we compute the average of the
associated W2V vectors. Using these features, a logistic regression
achieves an accuracy of 0.69. As we will illustrate in the next
section, while the performance of these text methods individually
is quite poor, when combined with the external project metadata
we see small performance increases. Thus, there is certainly some
signal in the project blurbs that the text models can detect.

5.3 Results

We present the results of our models, as discussed in Section 4,
trained on Data Samples 1 and 2 in Tables 3 and 4, respectively.
In both samples, gradient boosting performs best on both of our
main metrics, accuracy and F-1 score, followed closely by random
forest and neural net. See Figure 1 for a heatmap of the gradient
boosting predictions. Aside from the Lasso, the remaining models
all have fairly similar performances. All of our models perform
worst on Py, due to the presence of false negatives (as seen in
bottom left of Figure 1 as well). Note, input features for the neu-
ral net and logistic regression are standardized with zero-mean
and unit variance. For SVM, we use min-max standardization
to improve computational efficiency, as we ran into an issue of
lack of convergence and long run times. We ran the remaining
methods with and without feature standardization, which yielded
identical results — other than for the lasso whose performance on
standardized data suffered tremendously. All models are weighted
to ensure equal outcome class balance, as our initial sample is
slightly unbalanced, and all metrics are calculated on the test data.

Table 3. Model Results from Data Sample 1 (Metadata)

Model A F1 Py Py Ry Ro

G. Boosting 0.81 0.83 090 0.72 0.77 0.88
R. Forest 0.80 0.82 091 0.70 0.74 0.89
Neural Net 0.80 0.82 090 0.70 0.75 0.83

SVM 0.79 0.83 081 0.74 0.84 0.71
Logistic 0.78 0.80 0.88 0.67 0.72 0.86
Ridge 0.77 0.79 090 0.66 0.70 0.88
OLS 0.77 0.79 090 0.66 0.70 0.88
Lasso 0.70 0.74 0.78 0.61 0.70 0.71

The most important features in all of our models and samples
are the outcome and USD goal encoded categories as well as the
Naive Bayes predictions. Indeed, there is no additional gain for
including the other text-based features, as seen in Figures 2 and
3, which display the average accuracy and F-1 score achieved by
our main specification, gradient boosting, on each data sample
across 50 random seeds. While performance is even across samples,
computational efficiency is not. Indeed, Samples 3-5 have 1, 20,

Crowdfunding: Predicting Kickstarter Project Success

Table 4. Model Results from Data Sample 2 (Metadata & NB Bayes)

Model A F1 Py Py Ry Ro

G. Boosting 0.83 0.85 0.89 0.75 081 0.84
Neural Net 0.82 0.84 0.88 0.74 0.80 0.84
R. Forest 082 0.84 0388 0.74 0.80 0.84

Logistic 0.80 083 086 0.72 0.79 0.80
SVM 0.80 083 0382 0.76 085 0.71
Ridge 0.80 082 0.87 071 0.78 0.83
OLS 0.80 0.82 087 0.71 0.77 0.83
Lasso 0.71 075 0.79 0.62 0.72 0.71

30000

- 25000

- 0000

- 15000

True Outcome

-10000

- 5000

b 1
Predicted Qutcome (gradient boosting)
Fig. 1. Heatmap of true v. predicted outcomes

and 300 more features than Sample 2 respectively. Thus, Sample 2
and 3 are our preferred samples.

Fig. 2. Gradient boosting accuracy by data sample across 50 seeds

Metadata }—I—{

Metadata + NB

Metadata + NB + NLP

Data Sample

Metadata + NB + LDA

Metadata + NB + W2V .

}_I_| '
0812 0814 0816 0818 0820 0822 0824 0826 0828
Accuracy (gradient boosting)

Fig. 3. Gradient boosting F-1 score by data sample across 50 seeds

etatata |-I-|
Metadata + NB |—|:|]-|
' I
‘ I

08325 0.8350 0.8375 0.8400 08425 08450 08475 0.8500
F-1 Score (gradient boosting)

Metadata + NB + NLP

Data Sample

Metadata + NB + LDA

Metadata + NB + W2V

5.4 Parameters

For all models, optimal parameters were obtained by running
a grid search algorithm using five fold cross validation on the

train sample. The performance of both ridge and lasso regression
was not very sensitive to the regularization parameter, producing
nearly identical results, and we ultimately chose 0.75. For logistic
regression, we use a [2 penalty with C, the inverse of the regu-
larization strength, equal to 0.1. We use LinearSVC for SVM with
squared hinge loss as our loss function and a [2 penalty with C = 1.
We constructed our neural net to have one hidden layer with an
output dimension of 25 and a SELU activation function. The final
layer uses a sigmoid activation function. We train it with a mini
batch size of 3 over 30 epochs. For the random forest, we run 200
estimators, where each tree has a maximum depth of 55 and each
leaf has a minimum sample size of 10. At each split, we use a
Gini impurity criterion and consider approximately 15 random
features. Finally, in our gradient boosting implementation, we set
the proportion of rows and features available to each learner at
0.75 and 0.2. We use large trees with a maximum depth of 55 and
a maximum number of leaves of 400. Lightgbm uses a binning
procedure to obtain optimal splits, which we control by setting
the maximum number of feature bins at 500.

6 CONCLUSION

We find that the gradient boosting algorithm provides us with our
best results, consistently across all samples. Random forest and
neural net also performed very well, though were computationally
significantly more expensive. We note that SVM does not perform
as well as we might expect from the existing literature, which we
attribute to our large sample size. The size of the dataset is likely a
reason for our regression models performing up to par with some
of the other, more robust models.

Our best performing features were the categorical mean encod-
ings and the Naive Bayes predictions, underscoring the impor-
tance of feature engineering. While we experimented with more
aggressive feature selection, we did not observe any significant
performance benefits. Our models also did not exhibit any serious
signs of overfitting, as they generalized extremely well to the test
set. One potential explanation for this is that our training dataset is
large, particularly compared with previous crowdfunding papers
that have sample sizes on the order of 30,000 projects.

In our future work, we hope to obtain longer project “stories"
and use more advanced text encoding methods, such as Bidirec-
tional Encoder Representations from Transformers (BERT). BERT,
allows the model to evaluate the context of a word based on
all of its surroundings using Masked LM (MLM), which predicts
“masked" words in a sequence using their surroundings, and Next
Sentence Prediction (NSP) that predicts whether the first sentence
in a pair of sentences precedes the second. In training BERT, the
combined loss of MLM and NSP is minimized, thus optimizing for
the understanding of context. We also wish to incorporate image
and video project metadata in our models, potentially specifying a
Convolutional Neural Network, as we hypothesize that visual cues
are likely more important to the casual viewer than long-form
text descriptions.

7 CONTRIBUTIONS

Sauren initially spent his time looking for a good dataset to use
for the project as well as reading lots of relevant literature to
understand the pitfalls of other projects and where other projects
succeeded. His knowledge about the dataset came in handy when
we could not find where our models were going wrong. Further
down the road, he wrote the code that scaled the data for usage
in the SVM model, which he also wrote and tuned. In addition, he
wrote the CoreNLP code that analyzed the sentiment of the blurbs
and included it as a feature in the dataset. Finally, he spearheaded
writing the paper, in particular with regards to writing about the
models and the introductory text.

Benjamin, at the beginning, spent his time importing, cleaning,
and processing the data, including selecting which data attributes
to keep in our data analysis. After cleaning the data to a state in
which we could work with it, he developed the categorical mean
and one-hot encodings as well as the the first three text encodings
(NB, LDA, and W2V). He created a data pipeline we could all
use which was helpful for ensuring we were all working with
the same data. He wrote and tuned the majority of the sklearn
models, including (but not limited to) the regressions, the gradient
boosting algorithm, and the neural network. Finally, he has spent
time doing some error analysis and generating plots that we used
in our report above.

Khosla, Reinecke, and Wittenbrink

Joel (not enrolled in CS 229) initially played a key role in de-
termining what analyses and features might be of interest to us
as we began the data analysis. He then helped to import and
clean data. Finally, he contributed to the NLP analysis of project
blurbs. Specifically, he worked on a BERT model that informed
the concluding section of the report.

REFERENCES

Kevin Chen. 2013. KickPredict; Predicting Kickstarter Success. (2013). http:
//courses.cms.caltech.edu/cs145/2013/blue.pdf

Chaoran Cheng. 2019. Success Prediction on Crowdfunding with Multimodal
Deep Learning. (2019). https://www.ijcai.org/Proceedings/2019/0299.pdf

Nihit Desai. 2015. Plead or Pitch? The Role of Language in Kickstarter Project
Success. (2015). https://nlp.stanford.edu/courses/cs224n/2015/reports/15.pdf

Vincent Etter. 2013. Launch hard or go home!: predicting the success of kickstarter
campaigns. (2013). https://doi.org/10.1145/2512938.2512957

Alexander Genevsky. 2017. When Brain Beats Behavior: Neuroforecasting Crowd-
funding Outcomes. (2017). https://doi.org/10.1523/JNEUROSCI.1633-16.2017

Michael Greenberg. 2013. Crowdfunding support tools: predicting success failure.
(2013). https://doi.org/10.1145/2468356.2468682

Ethan Mollick. 2015. Delivery Rates on Kickstarter. (2015). https://repository.
upenn.edu/mgmt_papers/210/

Hongke Zhao. 2017. Tracking the Dynamics in Crowdfunding. (2017). https:
//doi.org/10.1145/3097983.3098030

Additional sources not showing up in references:
(1) “Kickstarter Datasets." 2021. Web Robots. https://webrobots.io/kickstarter-

datasets/.
(2) “Google News Vectors." 2021. Google Drive.
https://drive.google.com/file/d/0B7XkCwpI5KDYNINUTTISS21pQmM.

http://courses.cms.caltech.edu/cs145/2013/blue.pdf
http://courses.cms.caltech.edu/cs145/2013/blue.pdf
https://www.ijcai.org/Proceedings/2019/0299.pdf
https://nlp.stanford.edu/courses/cs224n/2015/reports/15.pdf
https://doi.org/10.1145/2512938.2512957
https://doi.org/10.1523/JNEUROSCI.1633-16.2017
https://doi.org/10.1145/2468356.2468682
https://repository.upenn.edu/mgmt_papers/210/
https://repository.upenn.edu/mgmt_papers/210/
https://doi.org/10.1145/3097983.3098030
https://doi.org/10.1145/3097983.3098030

	Abstract
	1 Introduction
	2 Relevant Literature
	3 Data & Features
	3.1 Data
	3.2 Categorical Encodings
	3.3 Text Encodings

	4 Models
	4.1 Multinomial Naive Bayes
	4.2 Linear Probability Models
	4.3 Logistic Regression
	4.4 Support Vector Machines
	4.5 Random Forest
	4.6 Gradient Boosting
	4.7 Dense Neural Network

	5 Experiments
	5.1 Model Evaluation Metrics
	5.2 Samples
	5.3 Results
	5.4 Parameters

	6 Conclusion
	7 Contributions
	References

